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We study a recently proposed “correlation-based,” push-pull model of
the circuitry of layer 4 of cat visual cortex. This model was previously
shown to explain the contrast-invariance of cortical orientation tuning.
Here we show that it can simultaneously account for several contrast-
dependent (c-d) “nonlinearities” in cortical responses. These include
an advance with increasing contrast in the temporal phase of response
to a sinusoidally modulated stimulus; a change in shape of the tem-
poral frequency tuning curve, so that higher temporal frequencies may
give little or no response at low contrast but reasonable responses at
high contrast; and contrast saturation that occurs at lower contrasts in
cortex than in the lateral geniculate nucleus (LGN). In the context of
the model circuit, these properties arise from a mixture of nonlinear
cellular and synaptic mechanisms: short-term synaptic depression,
spike-rate adaptation, contrast-induced changes in cellular conduc-
tance, and the nonzero spike threshold. The former three mechanisms
are sufficient to explain the experimentally observed increase in c-d
phase advance in cortex relative to LGN. The c-d changes in temporal
frequency tuning arise as a threshold effect: voltage modulations in
response to higher-frequency inputs are only slightly above threshold
at lower contrast, but become robustly suprathreshold at higher con-
trast. The other three nonlinear mechanisms also play a crucial role in
this result, allowing contrast dependence of temporal frequency tuning
to coexist with contrast-invariance of orientation tuning. Contrast
saturation, and the observation that responses to stimuli of increasing
temporal frequency saturate at increasingly high contrasts, can be
induced both by the model’s push-pull inhibition and by synaptic
depression. Previous proposals explained these nonlinear response
properties by assuming contrast-invariant orientation tuning as a start-
ing point, and adding normalization by shunting inhibition derived
equally from cells of all preferred orientations. The present proposal
simultaneously explains both contrast-invariant orientation tuning and
these contrast-dependent nonlinearities and requires only processing
that is local in orientation, in agreement with intracellular
measurements.

I N T R O D U C T I O N

The response properties of simple cells in layer 4 of cat
primary visual cortex (V1) serve as a model system for study-
ing the mechanisms underlying cerebral cortical processing.

These cells are perhaps the best-studied cortical cells and are
the site of emergence of the strong selectivity for stimulus
orientation seen throughout visual cortex (Hubel and Wiesel
1962).

One of the defining characteristics of simple cells is the
largely linear nature of their responses. Their responses to
arbitrary stimuli can be reasonably well predicted from a
weighted sum of stimulus intensity, where the weighting is
given by the cell’s receptive field and negative values of the
weighted sum are taken to yield zero response (DeAngelis et
al. 1993; Hubel and Wiesel 1962; Jones and Palmer 1987). As
predicted by a linear response model, the shape of a simple
cell’s orientation tuning curve is invariant to changes in stim-
ulus contrast (Sclar and Freeman 1982; Skottun et al. 1987): a
change in contrast scales all responses by a constant, rather
than changing the form of the response tuning curve.

However, other aspects of simple cell responses show a
nonlinear dependence on stimulus contrast (reviewed in Car-
andini et al. 1998). In this paper we will examine three such
properties:1) contrast-dependent phase advance: as the con-
trast of a sinusoidal grating stimulus increases, the response of
a cortical cell occurs earlier in the stimulus cycle (Albrecht
1995; Dean and Tolhurst 1986);2) contrast-dependent tempo-
ral frequency tuning: higher temporal frequencies that yield
small or zero responses at low contrast yield reasonable re-
sponses at high contrast (Albrecht 1995; Holub and Morton-
Gibson 1981); and3) contrast saturation: the change in re-
sponse amplitude with contrast has a sigmoidal rather than
linear dependence on contrast, saturating at intermediate con-
trasts (e.g., Albrecht 1995). The third property involves the
nonlinear dependence of scaling on contrast. The first two
involve changes in response more complex than a simple
scaling by contrast: responses either move earlier in time
(property 1) or increase differentially across the tuning curve
(property 2).

In this paper, we address the question of how a single model
circuit, consistent with existing experimental knowledge of cat
visual cortex, can simultaneously account for both the linear-
like response scaling of contrast-invariant orientation tuning
and the above three nonlinear response properties. In principle,
accounting for nonlinear response properties in isolation may
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not be difficult, given the many inherently nonlinear properties
of the synapses, cells, and circuits involved. We suggest that
the true difficulty lies in simultaneously accounting for both
linear-like and nonlinear response properties: how can the
underlying nonlinear mechanisms be manifest in some aspects
of response and yet simultaneously be hidden in other aspects?
Indeed, the difficulty of generating any linear-like responses at
all is well illustrated by the contrast-invariance of orientation
tuning in response to drifting sinusoidal luminance gratings.
LGN cells do not provide linear input to simple cells, because
their response rates cannot decrease below zero. As a result,
LGN mean firing rates increase with contrast. Under a linear
response model, an increase in stimulus contrast would in-
crease the amplitude of temporal modulation of firing rates
without affecting mean rates. Furthermore, cortical cells inte-
grate this input through the nonlinearity of a nonzero spike
threshold. Due to the increase both in modulations and means
of LGN firing rates, a broader range of stimulus orientations
should produce suprathreshold LGN input at higher contrasts.
Thus the orientation tuning of the LGN input to a simple cell
should widen with increasing stimulus contrast.

We have recently demonstrated (Troyer et al. 1998) that the
contrast-invariance of orientation tuning can be accounted for
by the combination of1) a simple model intracortical circuit
motivated by numerous intracellular studies (e.g., Anderson et
al. 2000; Chung and Ferster 1998; Ferster 1986, 1988; Ferster
et al. 1996; Hirsch et al. 1998; Nelson et al. 1994) and2) a
“Hubel-Wiesel” (1962) arrangement of lateral geniculate nu-
cleus (LGN) inputs to simple cells, in which oriented bands of
ON- or OFF-center LGN inputs provide input to theON- or
OFF-subregions, respectively, of the simple cell’s receptive
field. Here we demonstrate, for the first time, a unified mech-
anistic account of both the linear and nonlinear aspects of
simple cell responses. Our previous model incorporated a
number of nonlinear mechanisms, including spike-rate adapta-
tion, contrast-induced changes in cellular conductance, and the
nonzero spike threshold. We now add one additional nonlinear
mechanism, short-term synaptic depression (Abbott et al. 1997;
Tsodyks and Markram 1997). We show that the resulting
model explains the three nonlinear properties noted above,
while retaining contrast-invariant orientation tuning.

Importantly, this is the first explanation of these properties
using a model circuit that is purely local in orientation (see
DISCUSSION for other models). That is, both the excitatory and
the inhibitory intracortical input received by a simple cell
comes primarily from cells having similar preferred orienta-
tion, as suggested by numerous experiments in cat V1 (Ander-
son et al. 2000; Chung and Ferster 1998; Ferster 1986, 1988;
Ferster et al. 1996; Hirsch et al. 1998).

Some of these results have appeared in abstract form (Priebe
et al. 1997).

M O D E L I N G F R A M E W O R K

We begin by summarizing the essential information about
our model needed to understand our results. Full details suffi-
cient to replicate our work are inAPPENDIX A.

Intracortical circuit

We study a circuit (Troyer et al. 1998) in which1) genicu-
locortical synaptic weights to a cell are described by Gabor

functions (Jones and Palmer 1987), withON-center (OFF-center)
inputs corresponding to positive (negative) portions of the
Gabor; and2) intracortical connections are made between
cortical cells based on the correlations between their receptive
fields (RFs), i.e., between the geniculocortical synaptic weights
they receive. An excitatory cell makes strong connections onto
other excitatory cells with which it is strongly correlated; an
inhibitory cell makes strong connections onto excitatory cells
with which it is strongly anticorrelated. The dominant resulting
connections follow a “push-pull” scheme and are illustrated in
Fig. 1. A crucial requirement is that inhibition be dominant: the
feed-forward inhibitory pathway LGN3 I 3 E must have
stronger overall gain than the feed-forward excitatory pathway
LGN 3 E (where E and I indicate excitatory and inhibitory
cortical cells, respectively), as assessed by the mean feed-
forward inhibition exceeding mean feed-forward excitation
over a cycle of response to a sinusoidal stimulus. More spe-
cifically, the mean conductance opened by the two pathways
over a cycle must have a sufficiently subthreshold reversal

FIG. 1. Cartoon of the cortical circuit studied. All neurons receive
excitatory geniculocortical connections from the lateral geniculate nucleus
(LGN) as determined by Gabor functions (illustrated by modulations on a
gray/uniform background):ON inputs at a given retinal location within the
receptive field (RF) are represented by white;OFF inputs by black. All
illustrated RFs are centered at a common retinotopic position. Neurons with
RFs of similar preferred orientation but opposite spatial phase are con-
nected by inhibitory synaptic weights (white, with black outline), while
neurons with similar preferred orientations and similar spatial phases are
connected by excitatory synaptic weights (black arrows).A: response to a
full-field sinusoidal grating of the preferred orientation. When the stimulus
maximally overlaps the RFs on the left, the geniculocortical input to those
cells is maximal (large solid black arrows), while the input to the RFs of
opposite spatial phase (those on theright of A) is minimal (small solid
black arrows). Neurons of the well-stimulated phase will fire robustly, and
the strongly activated inhibitory cells send inhibition only to the weakly
stimulated anti-phase excitatory neurons, which do not fire. As a result, as
the grating moves across the neurons’ RFs, the excitatory cortical neurons
will produce a strongly time-varying response at the same temporal fre-
quency as that of the input.B: response to a full-field sinusoidal grating of
the null orientation (orthogonal to the preferred). Because LGN cells
respond to all orientations, the geniculocortical input is still present, but the
input to each phase is approximately equal. Inhibition is equally strong
from neurons of each phase to their anti-phase excitatory-cell partners.
Since inhibition is dominant, none of the excitatory cells fire. The actual
circuit studied included cells of many preferred orientations and spatial
phases and, for the spiking model, many retinotopic positions. Connections
were based on correlations between RFs. Cartoon illustrates dominant
connections; resulting circuit behavior can be well understood from this
simplified version of the circuit (Troyer et al. 1998).
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potential to prevent spiking to a stimulus with orientation
orthogonal to a cell’s preferred orientation.

This architecture can account for cortical orientation tuning
and its contrast invariance (Troyer et al. 1998). How does this
circuitry account for orientation tuning? For a stimulus at a
cell’s preferred orientation and spatial phase, other neurons
with similar preferred orientation and spatial phase (both ex-
citatory and inhibitory) are strongly activated. However, the
inhibition is directed onto cells with similar preferred orienta-
tion but antiphase (opposite spatial phase) RFs. In the case of
a drifting sinusoidal grating of the preferred orientation, the
resulting inhibition received by a cell comes out-of-phase with
its excitation, permitting excitatory cells to respond during the
temporal phase in which more excitation is received than
inhibition (Fig. 1A). As the orientation is shifted away from the
preferred, temporal modulation of both feed-forward excitation
and feed-forward inhibition decreases. Since inhibition is dom-
inant in the mean, at some orientation the modulation is small
enough that inhibition is dominant at all times, and the cell
cannot fire. In particular, for a stimulus at a cell’s null orien-
tation (perpendicular to the preferred), there is essentially no
modulation, inhibitory neurons of both the cell’s preferred
phase and the opposite phase are continuously activated, and
thus excitatory cells of both phases are continuously inhibited
(Fig. 1B).

The contrast-invariance of orientation tuning arises because
an increase in contrast equally increases the geniculocortical
drive to a given cell and to the anti-phase cells from which it
receives inhibition. Thus the cutoff orientation (the orientation
for which input modulation is sufficiently small that inhibition
dominates throughout the cycle) remains essentially invariant
across contrast. A more detailed analysis is given in Troyer et
al. (1998).

Rate model

We studied two forms of model: a conceptual rate model and
a more biophysically accurate spiking model. The rate model
allowed exploration of the cortical circuit and its elements
within a simple framework. This allowed us both to work out
the basic mechanisms underlying circuit properties, and to
explore a significant portion of the given parameter space,
thereby establishing the robustness of these insights. The spik-
ing model, on the other hand, allowed us to establish that the
insights gained from the rate model translated to a more de-
tailed, more biophysically realistic setting, and thus provided a
verification of the rate model findings. The spiking model also
allowed us to examine the role of spike-rate adaptation, which
was not easily accommodated in the rate model.

The rate model consisted of 96 excitatory and 96 inhibitory
neurons, with RFs of 12 different orientations and 8 different
spatial phases, all centered at the same retinotopic point. Con-
nections between cortical neurons were made deterministically
based on the correlation between their RFs, as described above.
Model neuron firing rates were calculated as the weighted sum
of all the input firing rates from geniculocortical, intracortical
excitatory, and intracortical inhibitory sources, rectified at a
threshold; hence the term, “rate model.” The model was de-
scribed by eight parameters: the thresholds and membrane time
constants of excitatory and inhibitory cells, the gains of genicu-
locortical (G), intracortical inhibitory-to-excitatory (I), and ex-

citatory-to-excitatory (E) cell connections, and a lower bound
on the membrane voltage. Appropriate values for these eight
variables were obtained by constraining the output of the
circuit to match a set of experimental findings, including the
width and contrast-invariance of orientation tuning (seeAPPEN-
DIX A ); this set did not include the nonlinear responses proper-
ties studied here. In addition, two parameters describe synaptic
depression, as described below. For each choice of synaptic
depression parameters, we typically show average results over
all sets of the other parameters that met these criteria, thus
examining the robustness of the results across experimentally
reasonable model parameters that are consistent with contrast-
invariant tuning.

Spiking model

To expand on the insights obtained from the rate model in a
more biophysically realistic framework, we used the spiking
model of Troyer et al. (1998). One thousand six hundred
excitatory and 400 inhibitory neurons were laid out in a2⁄3
mm 3 2⁄3 mm cortical grid, with retinotopic position con-
strained to move smoothly across the grid, and with orienta-
tions determined by an experimentally measured map from cat
V1. The spatial phase of each RF (which determines the
location of itsON and OFF subregions) was chosen randomly.
Connections between cortical cells were then made probabilis-
tically based on the correlation between the RFs. All neurons
were conductance-based integrate-and-fire cells, matched to
data from McCormick et al. (1985) as explained in Troyer and
Miller (1997a,b). Excitatory neurons had spike-rate adaptation
currents. We included only fast [a-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) and GABA-A] synaptic
currents, deferring examination of slow currents [e.g.,N-meth-
yl-D-aspartate (NMDA) and GABA-B] to future work (e.g.,
Krukowski 2000). Again, parameters were chosen to achieve
appropriately narrow, contrast-invariant orientation tuning, and
nonlinear response properties were then studied (seeAPPENDIX

A). Due to the complexity of the model, we present results for
only a single set of circuit parameters for each set of synaptic
depression parameters used.

Visual stimuli and LGN inputs

Visual inputs to the models were drifting full-field sinusoidal
gratings. LGN responses were assumed to arise from a spike
rate that was the sum of a linear stimulus-induced temporal
modulation and a constant background rate, with rates rectified
at zero. Amplitudes of the stimulus modulation were matched
to LGN data on X-cell responses across contrast and temporal
and spatial frequency (Sclar 1987), as described inAPPENDIX A.
The rate model used this rate directly as the LGN response,
while the spiking model used Poisson spike trains sampled
from these rates.

The geniculocortical synaptic weights to the simple cells in
the model layer 4 were described by Gabor functions, with
parameters matched to experimental measurements of simple
cell RFs. In the rate model, the geniculocortical (G) weights
were defined deterministically by the Gabor distribution, with
negative Gabor values indicatingOFF weights; the spiking
model RFs were established probabilistically by sampling from
the Gabor distribution.
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Synaptic depression

Synaptic depression is a use-dependent decrease in synaptic
efficacy (Abbott et al. 1997; Markram and Tsodyks 1996); as
the firing rate of a presynaptic neuron increases, the influence
of single synapses from that cell onto the postsynaptic neuron
declines. Intuitively, this relationship holds because higher
firing frequencies prevent recovery from depression between
input spikes, as discussed below.

One can characterize synaptic depression by two parameters:
f, the ratio of the synaptic efficacy immediately after a presyn-
aptic spike to the efficacy before the spike (0# f # 1), andt,
the time constant of recovery from depression. Smaller values
for f lead to a greater loss of synaptic efficacy after every spike;
smaller values oft cause faster recovery from this depression.
In both the rate and spiking models, like forms of depression
are used: the rate-model depression equation is equal to the
average, over Poisson-sampled spike trains, of the spiking-
model depression equation (seeAPPENDIX B), and their behavior
in simulations is qualitatively and quantitatively quite similar.

In the experimental literature, two classes of data appear to
be present: one in which synaptic depression is studied through
the use of paired-pulse stimuli, and one in which depression is
characterized by probing with trains of stimuli (S. Nelson,
personal communication). These two types of experiment re-
sult in different measured values forf andt, which we call the
“pulse” and “train” parameters, respectively (Table 1). Given
this experimental uncertainty in parameter values, we exam-
ined all results under both choices of parameters.

Contrast-invariance of orientation tuning

As we have mentioned, one of the criteria for selection of
our model parameters was that the resulting circuit should have
contrast-invariant orientation tuning. More generally, we have
found that the principles outlined in Troyer et al. (1998) suffice
to robustly produce contrast-invariant tuning across temporal
frequencies and in the presence of synaptic depression, two
issues not addressed in the previous work, although we do not
discuss this point further here.

E X P E R I M E N T A L F I N D I N G S A D D R E S S E D

Having summarized the model circuit, we now summarize
the experimental data on response nonlinearities that we will
address with this model.

Contrast-dependent phase advance

Simple cells respond earlier in time to drifting gratings as the
contrast of those gratings increases, as quantified by the dif-
ference in the phase of the first harmonic (F1) of the cortical
spiking responses at each contrast (Albrecht 1995; Dean and
Tolhurst 1986). We reviewed the literature to determine the
size of this contrast-dependent (c-d) phase advance (Fig. 2).
We examined both V1 and LGN c-d phase advance, because
only the difference between these values needs to be accounted
for by cortical mechanisms. In all cases we report the advance
over three octaves of contrast (e.g., the relative advance be-
tween 10 and 80% contrast).

For V1 simple cells in the cat, c-d phase advance has been
measured for approximately 30 cells (Dean and Tolhurst 1986)
in one study, and for over 100 cells in another (Albrecht 1995).
Mean c-d phase advances were comparable: 42° for a 2-Hz
grating in the former study, 47 and 49° for 2- and 8-Hz
gratings, respectively, in the latter. In the LGN, X cells show
25° mean c-d phase advance in response to 8-Hz (Sclar 1987)
and 3-Hz (Saul and Humphrey 1990) gratings, while Y cells
demonstrate as much or more c-d phase advance as cortical
simple cells. Both the LGN and cortical measurements are
characterized by large standard deviations. Without a knowl-
edge of the X or Y nature of the geniculocortical inputs to the
cortical cells studied previously, it is difficult to know how
much c-d phase advance the cortex must add, or even whether
it adds any at all. An additional uncertainty is raised by the fact
that we are modeling layer 4, where the first transformation of
LGN inputs occurs. Further cortical transformations could add
more c-d phase advance, so layer 4 might show less c-d phase
advance than the cortical mean; however, the data on cortical
cells were not broken down by layers.

We make perhaps the simplest assumption: cortical layer 4
should account for the mean difference in c-d phase advance
between X cells and V1 simple cells. This is based in part on
observations suggesting that X cells are the physiologically
dominant input in V1 (Ferster 1990a,b; Ferster and Jagadeesh
1991). Thus we assume that layer 4 must account for roughly
20° of c-d phase advance over 3 octaves of contrast. Note that
we do not include LGN c-d phase advance in our simulations,
so the simulations should be compared only to this difference
between experimentally observed LGN and V1 c-d phase ad-
vance.

TABLE 1. Depression parameters

Location

Paired-Pulse Data Train Data

f t, ms Layer(s) f t, ms Layer(s)

G 0.563a 99a LGN3 IV 0.465d 371d LGN3 III
E 0.875b 57b IV 3 IV 0.8e 472e II/III 3 II/III
I 0.8c 179c IV 3 IV 0.95e 1017e II/III 3 II/III

Parameters were derived by least-squares fits to data in the figures indicated, except that parameters from the random stimulus train experiments of Song et
al. (1999) were taken directly as reported. Geniculocortical data divided readily into pulse (Stratford et al. 1996) and train (Gil et al. 1997) parameter sets. The
corresponding intracortical data were then chosen, in the case of the pulse data, from work from the same laboratory (Tarczy-Hornoch 1996; Tarczy-Hornoch
et al. 1998); and in the case of the train data, from other work in the rodent that recorded both E and I depression curves (Song et al. 1999). Note also thatmany
of the f andt values in this table do not describe connections within layer IV, the cortical layer we model in this paper. Where possible, when compiling this
table we selected values determined1) in layer IV 2) within primary visual cortex3) in the cat. LGN, lateral geniculate nucleus.a Stratford et al. (1996, Fig.
1g); cat primary visual cortex.b Tarczy-Hornoch (1996, Fig. 4.5); cat primary visual cortex.c Tarczy-Hornoch et al. (1998, Fig. 4; 0.2-Hz curve); cat primary
visual cortex.d Gil et al. (1997, Fig. 3); mouse and rat somatosensory cortex.e Song et al. (1999); rat primary visual cortex. Note that thet value from the figure
legend in Gil et al. (1997) refers to their exponential fit,not to the time constant of a fit to a synaptic depression description.
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Contrast-dependent changes in temporal frequency tuning

In response to an increase in stimulus contrast, cortical
temporal-frequency tuning curves change their shape. Higher
temporal-frequency stimuli that yield small or zero responses
at low contrast yield reasonable responses at higher contrast.
One measure of this is given by comparing the ratios, at each
temporal frequency, of the response at high contrast to the
response at low contrast. In data taken from an LGN X cell
[Fig. 3, top; replotted from Sclar (1987)], this ratio is relatively
constant across temporal frequencies, although slightly larger
at higher frequencies. This behavior was fairly typical of 27 X
cells studied in Sclar (1987). In two cortical simple cells
reported in Albrecht (1995), however (one replotted in Fig. 3,
bottom), this ratio increases sharply with increasing temporal
frequency: higher temporal frequencies give very small re-
sponses at low contrast, but reasonable responses at higher
contrast. The cortical data for cats is very sparse: we are aware
of only the two cells from Albrecht (1995) and one additional
cell in Holub and Morton-Gibson (1981) for which temporal
frequency tuning at multiple contrasts is reported; all three
cells show this effect. The effect is also common, although not
universal, in monkey V1 cells [M. Hawken, private communi-

cation; Hawken et al. 1992; of 3 published tuning curves, effect
is seen in Carandini et al. (1997), Fig. 6 but not Fig. 9 and not
seen in Albrecht (1995), Fig. 11], suggesting that a relative
boosting with contrast of the high temporal-frequency portion
of the temporal tuning curve may be a common V1 property.
However, there are no data as to whether, or how strongly, this
effect is seen in layer 4 neurons. Moreover, LGN Y cells show
a more pronounced c-d boosting of the high-frequency portion
of the tuning curve (Sclar 1987) than do X cells. Just as for c-d
phase advance, without knowledge of the relative X and Y cell
input to studied simple cells, it is unclear how much of this
boost, if any, is accomplished by the cortex. We again make
the assumption that the cortex must account for the difference
in response between X cells and V1 simple cells. Last, these
data also suggest, as does one published cell in monkeys
(Carandini et al. 1997, Fig. 6), that increases in contrast might
also shift the peak of the temporal frequency response curve to
higher frequencies.

It is important to note that the relative boosting of high-
frequency responses by contrast does not correspond to an
increase in contrast gain (the slope of response versus contrast)
at higher temporal frequencies. Plotting the responses at each

FIG. 2. Experimentally determined values for contrast-dependent (c-d) phase advance in 3 parts of the visual pathway: retinal
ganglion cells (RGC,bottom,in dark gray), lateral geniculate nucleus (LGN,middle,in gray), and striate cortex (CTX,top, in light
gray). All studies are in cats. c-d phase advance is quantified here as the relative phase difference between responses to stimuli
differing by 3 octaves of contrast. The contrasts below are Michelson contrasts [(Imax 2 Imin)/(2 * Imean)]. Data represented are
mean c-d phase advance (and SD where provided) across cells studied, and are as follows:1) Dean and Tolhurst (1986): responses
to 5 and 25% contrast drifting gratings for 29 V1 simple cells. We linearly extrapolated, from 2.3 octaves of contrast to 3, the
reported mean and SD of c-d phase advance.2) Albrecht (1995) (taken fromDISCUSSIONof that paper): 2 Hz: responses to 5 and
25% contrast drifting gratings, results linearly extrapolated from 2.3 to 3 octaves. 8 Hz: responses to drifting gratings at 10 and 80%
contrast (note, c-d phase advance at 8 Hz between 3.5 and 28.3% contrast, also 3 octaves, was 33% larger). All data for V1 simple
cells; SDs and number of cells were not reported.3) Sclar (1987): mean and SD responses to 10 and 80% contrast drifting gratings
for 27 X and 51 Y cells.4) Saul and Humphrey (1990): responses to drifting gratings of optimal temporal frequencies for 19
nonlagged X and 8 nonlagged Y cells over a range of contrasts (0.0025–96%). Their linear fits to phases of suprathreshold responses
provided slopes with accompanying SDs (both in cycles of phase per octave of contrast), which we multiplied by 3 (converted to
degrees) to obtain changes over 3 octaves.5) Shapley and Victor (1978): 3.5 and 28.3% contrast (2.5 and 20% RMS contrast) for
8 X and 18 Y cells. Responses to counterphase gratings including 6–8 different temporal frequencies with total contrast as
indicated; phase advance of 8-Hz component was determined. In those papers in which phase advance was determined for both X
and Y cells, the same temporal frequency was used for each data set; in the figure, this frequency is indicated in the “Y-cell” bar
only. We were guided through this data by the lucid discussion of Albrecht (1995).
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temporal frequency versus contrast (Fig. 4) makes clear that
this slope is not enhanced at higher frequencies and, if any-
thing, is reduced. Another of the three cells in the literature
(Holub and Morton-Gibson 1981) showed similar contrast gain
at high and low temporal frequencies, but an elevated threshold
contrast for higher temporal-frequency responses. Thus the
greater relative amplification with contrast of responses to
higher temporal frequencies arises because low-contrast re-
sponses at higher frequencies are very small, due to lower
contrast gain and/or to elevated contrast threshold, and not
because high-contrast responses show an elevated contrast
gain.

Saturation of responses with increasing contrast

Simple-cell responses tend to reach a plateau with increasing
stimulus contrast (Fig. 4,bottom); this is known as contrast
saturation. This cannot be explained by intrinsic saturation of
the cell’s ability to fire. As evidenced, for example, by the
contrast-invariance of orientation tuning, saturation does not
occur at a fixed response level, but rather at different responses
levels for different stimuli (so that orientation tuning curves are
similar in shape at saturating contrasts and at low contrasts).
LGN inputs show contrast saturation as well (Fig. 4,top). If
LGN input firing does not change with increasing contrast,
neither will cortical firing. Thus the question arises of whether
cortical saturation level is independent of LGN saturation
level.

While the LGN X cell in Fig. 4 indeed saturates at higher
contrasts than the cortical cells in that figure, it is not clear
whether this is a general phenomenon. Contrast saturation can
be measured by a parameter C50: the contrast at which response
is half of the maximal, saturating response (determined from a
fit of the Naka-Rushton equation,Eq. A1in APPENDIX A, to the
contrast-response curve). In Table 2, we show the value of C50
for the cell of Fig. 4 and for 1 additional cortical and 5
additional LGN X cells for which we found contrast response
curves in the literature, along with the mean value reported for
over 100 cat cortical simple cells in Albrecht (1995). From
these values, it is not obvious whether cortical cells saturate
earlier than LGN cells. The same uncertainty applies in mon-
key, where V1 cells saturate over a range of contrasts similar
to the combined saturation ranges of magnocellular and par-
vocellular LGN cells (Allison et al. 2000; Sclar et al. 1990).

FIG. 3. Contrast enhances responses to higher temporal frequencies more in
V1 than LGN. Experimentally determined F1 responses at different temporal
frequencies and contrasts for an LGN X cell and a V1 cell. Lighter grays to
darker grays, with corresponding symbols: increasing contrast, with values
noted in legend for each figure. To show the relative increase in high-frequency
responses with increasing contrast, we plot normalized data in theinsets: each
response is divided by the response at the corresponding frequency and 10%
contrast (so that all 10% responses are normalized to 1). The 5% V1 cell curves
are omitted from the normalized data; we normalize by 10% to better compare
to our model curves in Fig. 10 (for which the low contrast is 10%). Dashed
lines within theinset indicate ratios of 1 (bottom line) and 5 (top line). LGN
X cell temporal frequency response; raw data replotted from Sclar (1987). V1
cell temporal frequency response; raw data replotted from Albrecht (1995).

FIG. 4. Experimental data for the temporal frequency dependence of con-
trast saturation. Experimentally determined F1 responses at different temporal
frequencies and contrasts for an LGN X cell and a V1 cell. Figures are
replotted from the data shown in Fig. 3, and fitted to Naka-Rushton curves (see
APPENDIX A). Lighter grays to darker grays: increasing temporal frequency.
LGN X cell contrast saturation response; raw data replotted from Sclar (1987).
V1 cell contrast saturation response; raw data replotted from Albrecht (1995).
Note that (for the most part, see text and Table 2) the responses of V1 cells
saturate at lower contrasts than do the LGN responses, and that cortical
responses to higher temporal frequency inputs saturate at higher contrasts.
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However, the phenomenon of contrast adaptation (Albrecht
et al. 1984; Ohzawa et al. 1985) strongly suggests a cortical
role in setting contrast saturation levels. Sustained presenta-
tions of low (high) contrast stimuli shift the cortical response
functions to lower (higher) C50s, without corresponding shifts
in the LGN response functions. Both threshold and saturating
contrasts are shifted by adaptation. This indicates that the
cortex can set its saturation level independently of the level at
which LGN responses saturate, and motivates us to explore the
effects of our model circuit mechanisms on cortical contrast
saturation. The strongest components of adaptation operate
over time scales longer than that of any mechanism incorpo-
rated in our network (mean time to2⁄3 of the total effect is
5.5–6.5 s, Ohzawa et al. 1985), so we cannot address these
effects. However, contrast adaptation or related phenomena are
seen on multiple time scales, including short time scales
(Bonds 1991; Geisler and Albrecht 1992; Nelson 1991a,b) that
are within the range of mechanisms studied here (spike-rate
adaptation, synaptic depression, recruitment of dominant op-
ponent inhibition). Here we address the contributions of these
mechanisms to contrast saturation, while noting that other
mechanisms might be involved in both saturation and adapta-
tion over longer time scales.

The data on contrast saturation also suggest an additional
point that we will address: simple cell responses saturate at
higher contrasts as temporal frequency increases. This effect
was noted by Albrecht (1995) in discussing the two cells for
which temporal frequency tuning was studied at multiple con-
trasts, and is shown particularly prominently by the cortical
cell of Fig. 4. Similar findings have been noted in monkeys
(Carandini et al. 1997).

R E S U L T S

Contrast-dependent phase advance

At least three mechanisms can contribute to cortical c-d
phase advance beyond that of the LGN inputs: synaptic de-
pression, spike-rate adaptation, and contrast-dependent in-
creases in conductance. Synaptic depression is evoked by the
presynaptic spiking response to the grating stimulus, and dif-
ferentially suppresses the later portions of the input, and thus of
the postsynaptic response, over each stimulus cycle. As illus-

trated in Fig. 5, this shifts the response peak forward in time.
Because the effect of synaptic depression grows with presyn-
aptic firing rate, and thus with contrast, this shift increases with
stimulus contrast, yielding a c-d phase advance. Spike-rate
adaptation is evoked by postsynaptic rather than presynaptic
spiking response, but otherwise it causes c-d phase advance for
the same reasons as synaptic depression. Finally, as empha-
sized in studies of the normalization model (e.g., Carandini et
al. 1998; seeDISCUSSION), increases in postsynaptic conduc-
tance cause a decrease in membrane time constant, and this
decrease in integration time causes the phase of responses to
advance. If conductance grows with stimulus contrast, this also
yields a c-d phase advance.

We first examined the role of synaptic depression. We began
by studying the effects of the depression parameters,f (the
fraction of synaptic strength remaining after each presynaptic
action potential) andt (the time constant of depression; Fig. 6).
Parametric variations off andt were carried out only for the
geniculocortical synapses: we examined the c-d phase advance
of the total geniculocortical input to simple cells in response to
optimally oriented spatial gratings drifting at three temporal
frequencies. Depression at geniculocortical synapses yields c-d
phase advances of 5–10° across a broad range of parameters.
We show only rate model results in Fig. 6, as spiking model
results are virtually identical.

The dependence of c-d phase advance onf and t can be
understood as follows. A smallerf, representing stronger de-
pression, induces stronger c-d phase advance, up to a point.
Oncef becomes small enough that the synaptic efficacies are
close to zero within the stimulus cycle at some contrast, further
increases in contrast have less and less additional effect, so too
great a reduction inf can decrease the c-d phase advance (Fig.
6A). Smaller t yields greater recovery from depression be-
tween spikes, hence less depression and less c-d phase ad-
vance. Ast increases, the depression becomes stronger and the
phase advance increases, untilt becomes comparable to the
period of the stimulus cycle. At this point,t is preventing
recovery of synaptic efficacy between response cycles. Further
increases int have little effect on c-d phase advance: such
increases change the dynamic range over a cycle, lowering the
mean synaptic efficacy and mean response, but do not seem to
appreciably alter the time course of depression and recovery

TABLE 2. Experimental C50 values

Cell

Temporal Frequency, Hz

1 2/2.5 3/3.3 4/5 6/6.7 8/10 12/12.5 15/16/16.7

LGN (1) .100 .100 .100 35 23.0 21.9 21.8
LGN (2) 12.7
LGN (3) 14.9
LGN (4) 6.7
LGN (5) 8.2
LGN (6) 5.7
V1(1) .100 30.0 16.7 21.6 18.5 28.9 39.1
V1(2) 7.7 7.4 13.1 16.2 22.7
V1 mean 15.5

C50 values from Naka-Rushton curves (Eq. A1) fit to experimental data. LGN (1), V1(1), V1(2): cells of Fig. 4,A–C, respectively. LGN (2–4): cells from
Cheng et al. (1995); LGN (5): cell from Chino et al. (1994). LGN (6): cell from Kaplan et al. (1987). V1 mean: mean from over 100 cat simple cells, each at
or near its optimal temporal frequency, reported in Albrecht (1995). LGN (1): temporal frequencies (TFs) 1, 2, 4, 8, 16 Hz. LGN (2–5): TF 3.1 Hz. LGN (6):
TF 4 Hz. V1(1): TFs 2.5, 3.3, 5, 6.7, 10, 12.5, 16.7 Hz. V1(2): TFs 1, 3, 6, 10, 15 Hz. For individual cells, we performed least-squares fits of Naka-Rushton
curves to published contrast-response data. Best-fit value greater than 100 indicates that the response did not show saturation over the measured contrasts.
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within that dynamic range (of course, ast 3 `, the steady-
state response level will go to zero, and c-d phase advance will
become undefined). Finally, an increase in temporal frequency
is roughly equivalent to moving the graphs down and to the
left: at higher temporal frequency, there is less time in each
cycle for depression to occur, so a largerf is needed to get an
equivalent amount of depression, and there is less time in each
cycle to recover from depression, so a smallert gives an
equivalent amount of recovery.

Next, for fixed f andt (set either according to the pulse or
train parameters, Table 1), we examined the relative contribu-
tions of synaptic depression at different synaptic loci in the full
model circuit, using the rate model. This model has no spike-
rate adaptation and has a fixed membrane time constant, so
only depression should contribute to the c-d phase advance.
Synaptic depression can be found in any of three locations: in

the geniculocortical synapses (G), in the intracortical excita-
tory synapses (E), and in the intracortical inhibitory synapses
(I). This yields eight possible configurations for the locations
of depressing synapses. Depression in the I synapses had little
effect on phase advance, so we illustrate the c-d phase advance
produced by the four configurations not involving I as well as
for the case of depression at all locations (Fig. 7). Matching
these data across the different depression conditions is not
trivial; one must ensure that the data are comparable by match-
ing firing rates, for example, or by using the same set of
parameters in all cases. We chose to show the distribution of
results for all model parameter sets that satisfied the known
experimental constraints (seeAPPENDIX A) at a given temporal
frequency. Similar plots in which we include only model
parameter sets that fit the constraints atall temporal frequen-
cies give similar results with less variability, but there are no
such parameter sets within our search range for some cases
(both sets of “G” cases, and the train “E” case).

As evidenced by Fig. 7, depression of either geniculocortical
or intracortical excitatory synapses can induce approximately
5° of c-d phase advance, and these advances sum when de-
pression is present in both locations. In the absence of any
depression, there is no c-d phase advance, as expected. These
general results are for the most part similar across temporal
frequency of the input and choice of synaptic depression pa-
rameters (pulse vs. train), except that the train parameter set
tends to produce somewhat larger phase shifts than the pulse
set, as is also evident in Fig. 6.

To consider the additional effects of spike-rate adaptation
and of contrast-dependent changes in membrane time constant,
we turn to the spiking model. In this model, depression was
included only at geniculocortical synapses, for reasons de-
scribed inAPPENDIX A. In the absence of depression (“D”) or
adaptation (“A”), a c-d phase shift of 3–4° appears, increasing
slightly with temporal frequency (Fig. 8, “No A, No D”). This
is roughly consistent with the observed contrast-induced de-
creases in membrane time constant.1 Adding either adaptation
alone (“A, no D”) or geniculocortical depression alone adds
roughly another 5°, and the effects of these two mechanisms
together are additive.

With all three mechanisms present, the spiking model shows
mean c-d phase advance of 13–15°, relative to LGN, for either
set of depression parameters (Fig. 8). Depression in intracor-
tical excitatory synapses can easily add another 5° (Fig. 7).
This suggests that these mechanisms may be sufficient to
account for the roughly 20° difference between LGN X cell
and V1 c-d phase advances that have been observed in cats
(Fig. 2). However, while we have found that the effects of
geniculocortical depression add with those of intracortical E
depression (Fig. 7) and with those of adaptation (Fig. 8), we

1 The time constantt varies across a stimulus cycle, but a simple analysis
can be obtained by regardingt as fixed for a given contrast. Then the formula
for contrast-dependent phase advance, in units of time, is [arctan (2pft0) 2
arctan (2tft1)]/2tf, wheret0 andt1 are the low-contrast and high-contrast time
constants, respectively, andf is temporal frequency. Including the effects of
stimulus-independent background firing,t in the spiking model is approxi-
mately 15 ms in the absence of a stimulus, 12.5 (DC)6 1.5 (F1) ms for F15
30 flat LGN inputs, and 8 (DC)6 2.5 (F1) ms for F15 90 flat LGN inputs.
A change oft from 12.5 to 8 ms or from 14 to 10.5 ms [mean or (mean1 F1)]
would predict advances of 2.5 or 3° at 2 Hz and 7 or 10° at 8 Hz. The prediction
is worse at higher temporal frequencies, but the assumptions may also be more
problematic since conductance changes more rapidly at higher frequencies.

FIG. 5. Geniculocortical synaptic depression induces both an absolute and
a relative phase advance.A and B: steady-state responses to a drifting sinu-
soidal grating at a cortical cell’s preferred orientation and spatial frequency.
Dashed lines show firing rate, noted on the ordinate, of a single LGNON cell
input to the cell; thin lines, instantaneous efficacy of the synapse from that
LGN input to the cortical cell, normalized by the weight’s maximum value;
thick lines, conductance contributed by that LGNON input to the cortical cell,
scaled by an arbitrary factor for display purposes (but maintaining the relative
difference between low and high contrast conductances across figures). The
efficacy decreases as input rate increases, and recovers after input rate declines.
Consequently, the peak of the conductance curve, the product of the efficacy
times the rate, shifts forward in time relative to the input. This shift in the peak
correlates well with the absolute phase advance. The cell’s output, which in the
absence of intracortical connections is just the LGN conductance temporally
filtered by the cell’s time constant (and rectified), will show a phase advance
similar to that of this single conductance.A: responses to a low contrast (10%)
stimulus.B: responses to a high contrast (80%) stimulus.C: comparison of the
conductances (now shown unscaled, and measured in Hz) induced by this
particular connection at low and high contrast. The steeper and stronger
synaptic depression at higher contrast leads to an earlier peak of cortical
response in each cycle and thus to a greater phase advance. Depression
parameters:f 5 0.465,t 5 371 (“train” parameters).
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have not studied the three together. We tried modeling adap-
tation in the rate model, but did not see an effect on c-d phase
advance. In our simple rate model, adaptation was proportional
to the rate, and therefore was active even at low rates. In reality
and in our spiking model, the net effect of adaptation increases
faster than linearly with firing rate: the mean adaptation current
increases proportionally to the rate, but the effect of this
current on spiking increases with rate, because at higher rates
(smaller interspike intervals), there is less time for the spike-
induced current to decay between spikes. This difference ap-
pears to be critical to the c-d phase advance induced by
adaptation. Rather than include a more complicated (and un-
derconstrained) dependence of adaptation on rate, we elected
to study only the effects of synaptic depression in the rate
model, and to study adaptation only in the spiking model.
Conversely, as discussed inAPPENDIX A, for reasons of compu-
tational complexity, we did not study depression of intracorti-
cal synapses in the spiking model.

We also examined the dependence of phase shift on stimulus
orientation in the rate model (data not shown). c-d phase
advance remains essentially constant across orientations that
give reasonable response.

Contrast-dependent changes in temporal frequency tuning

We next studied the contrast dependence of temporal fre-
quency tuning. As in our studies of c-d phase advance, we
wanted to isolate the cortical contribution to temporal fre-
quency tuning; in this case, to understand the cortical response
in the absence of any incoming temporal information beyond
the stimulus-driven temporal modulation of the input rates.
Experimentally, the LGN inputs show temporal-frequency de-
pendence in the amplitude of their rate modulations (response
F1; Fig. 3, top). Thus we found it convenient to consider an
even simpler model of LGN responses, in which the LGN
response F1 was constant across temporal frequencies at a
given contrast, with larger F1s representing higher contrast.
We refer to such an LGN response profile as “flat,” in distinc-

tion to the experimental tuning of Fig. 3,top,which we refer to
as “Sclar” tuning [because the experimental data are from Sclar
(1987)]. Using flat LGN tuning, we can examine cortical
contributions to temporal tuning; we can then examine full
cortical responses using Sclar LGN tuning.

Assuming flat LGN tuning, there are at least four cortical
factors that contribute to temporal frequency tuning and its
contrast dependence:1) the cellular time constant and its
decrease with increasing stimulus contrast;2) the spike-thresh-
old nonlinearity;3) spike-rate adaptation; and4) synaptic de-
pression. We consider the effects of each of these in turn.

Cellular (and synaptic) time constants act as low-pass filters,
causing the modulation of the simple cell’s voltage response
(the 1st harmonic of F1 of the voltage response) to decrease
with increasing temporal frequency.2 As we have already
noted, the average membrane time constant of a cortical cell
shrinks as the amount of synaptic input to the cell increases,
because increasing synaptic drive increases membrane conduc-
tance. As a result, at higher contrasts the voltage responses to
higher temporal frequencies are less attenuated by cellular
filtering than at lower contrasts (Carandini and Heeger 1994).
This effect is captured in the spiking model, but not in the rate
model which has a fixed time constant. The effect is modest:
the mean time constant in the spiking model shrinks from 12.5
to 8 ms between the low (F15 30) and high (F15 90) flat
input levels (further details in footnote 1). Assuming a linear
model of voltage response, this yields about an 18% increase in
the high-contrast voltage F1 at 12 Hz relative to that expected
from the low-contrast time constant.

However, this modest effect can become significant when
combined with the nonlinearity of a nonzero spiking threshold:

2 A linear model of a cell with time constantt produces modulated first
harmonic responses to temporal frequenciesf proportional to 1/=1 1 (2pft)2;
f 5 1/t; diminishes the maximum response by 84%. Membrane time constants
of 8–16 ms, as used in the rate model, would produce corresponding attenu-
ations of 14–35% at 12 Hz, and 22–46% at 16 Hz, relative to responses at 2
Hz. The time constant in the spiking model covers a similar range (footnote 1).

FIG. 6. The dependence of contrast-dependent geniculocortical phase advance onf andt in the rate model, shown for drifting
gratings of (A) 2-Hz, (B) 4-Hz, and (C) 8-Hz temporal frequency. Black indicates less phase advance; white indicates more phase
advance. The experimental values of the geniculocorticalf andt parameters for the pulse and train data sets (Table 1) are marked
by the words “Pulse” and “Train.” Gratings were of optimal orientation and spatial frequency; mean c-d phase advance across
simple cells of multiple spatial phases is shown. In this figure, response is simply the summed geniculocortical input to simple cells,
ignoring cortical integration; thus results are independent of choices of cortical model parameters. c-d phase advance is measured
for the sum over a cell’s geniculocortical inputs of synaptic efficacy times firing rate. Results are extremely similar for
geniculocortical input currents in the spiking model (not shown), with small differences due to the Poisson sampling of firing rates
in the latter model; depression in the rate model should correspond to average over Poisson samples (seeAPPENDIX B).
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the threshold gives rise to an “iceberg” effect. Figure 9A shows
responses in the spiking model to four levels of flat LGN input,
when adaptation but not depression is present. At 12-Hz input
frequency, the response is close to zero for input F1s of 15 or
30 spikes per second, but thereafter grows with increasing
input F1, suggesting a threshold effect. This can be confirmed

by viewing the corresponding intracellular voltage traces for a
randomly chosen cell with spiking turned off (Fig. 9B); the
spike threshold of252.5 mV is indicated as a dashed line. The
modest attenuation of voltage modulation due to membrane
filtering is, on average, sufficient to keep voltage responses
subthreshold at the lower input levels. Higher input modulation
levels, however, yield higher voltage modulations that consis-
tently cross threshold. This threshold effect depends on our
circuit model, in which inhibition is dominant so that the mean
response to a sinusoidal grating is always subthreshold and
spiking occurs only on voltage modulations (Troyer et al.
1998); in a model in which the mean input to a preferred
stimulus was suprathreshold, the modest affects of cellular
filtering on the voltage modulations would have only modest
effects on spike response.

To examine the effects of the other mechanisms, we exam-
ined temporal frequency tuning curves with and without syn-
aptic depression (Fig. 10:A, no depression;B, pulse depression
parameters) and, for the spiking model, with and without

FIG. 7. Dependence of c-d phase advance on the location of depressing
synapses. Graphs show c-d phase advance6 SD for those rate model param-
eter sets that produce constraint-satisfying outputs (seeAPPENDIX A) at a given
temporal frequency. The number of parameter sets contributing to each data
point is noted above each error bar. c-d phase advance is shown for grating
inputs with temporal frequencies of 2, 4, and 8 Hz, represented by the light
gray, gray, and dark gray bars, respectively. The location of the depressing
synapses, if any, in each of the cases is indicated by the letter(s) on the abscissa
(G 5 geniculocortical, I5 inhibitory, E5 excitatory intracortical). The 3 bars
above “G1 I 1 E,” for example, indicate the c-d phase advance6 SD for 2-,
4-, and 8-Hz grating inputs when the rate model includes depression in all 3 of
the G, I, and E synapses.A: c-d phase advance for “pulse” depression
parameters.B: c-d phase advance for “train” depression parameters. Note that
the rate model is completely deterministic; the SDs arise from the averaging of
all constraint-satisfying parameter sets for the given temporal frequency and
location(s) of depressing synapses. When we restricted ourselves to parameter
sets that satisfied constraints across all 3 temporal frequencies, results were
very similar where such parameters were found (except that SDs were much
smaller); but no such sets were found for some locations of depressing
synapses (see text).

FIG. 8. c-d phase advance of spiking model in the presence of different
temporal nonlinearities for different temporal frequencies of input. Light gray:
input gratings at a temporal frequency of 2 Hz; gray: input gratings at 4 Hz;
dark gray: input gratings at 8 Hz. Four different types of simulations were run:
from left to right, simulations with neither spike-rate adaptation nor synaptic
depression (“no A, no D”), simulations with only spike-rate adaptation (“A, no
D”), simulations with only synaptic depression (“D, no A”), and simulations
with both mechanisms present (“A and D”). We calculated a c-d phase advance
from the peristimulus time histograms for each of the 29 cells examined, then
computed the mean and SD across cells for each condition. Both spike-rate
adaptation and geniculocortical synaptic depression induce a c-d phase ad-
vance, and the advance increases when both are present simultaneously.
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spike-rate adaptation currents (Fig. 10, spiking model:middle
panels,no adaptation;bottom panels,with adaptation). In all
cases, we present data for both flat (dashed lines in Fig. 10) and
Sclar (solid lines in Fig. 10) LGN tuning. Thetop panelsof
Fig. 10, A and B, show the LGN input to simple cells. LGN
cells respond better to high than to low temporal frequencies
and show slightly more contrast-dependent enhancement of
both high and low temporal frequencies than of middle tem-
poral frequencies (Fig. 10A, Sclar inputs). In the absence of

depression or adaptation, the filtering by the cortical cell’s
membrane time constant, combined with the spike threshold,
produces strongly low-pass cortical responses (Fig. 10A, mid-
dle panels). Both spike-rate adaptation (Fig. 10,bottom panels)
and synaptic depression (Fig. 10B) suppress responses to low-
er-frequency stimuli much more strongly than responses to
higher-frequency stimuli, and can convert low-pass cortical
response into a more band-pass response. This property of
synaptic depression also virtually eliminates the difference
between flat and Sclar inputs (Fig. 10B, top panels). Train
parameters for synaptic depression produce results similar to
pulse parameters, except that there is less difference between
responses to low versus high contrasts (not shown).

Both synaptic depression and spike-rate adaptation contrib-
ute to the relative enhancement of higher temporal-frequency
responses at high contrast. Each is more strongly activated by
higher-contrast than by lower-contrast stimuli, and each more
strongly suppresses responses to lower-frequency than to high-
er-frequency stimuli. These contrast-dependent effects are
most clear in the “normed”insets in each panel of Fig. 10,
which show the ratio of high-contrast to low-contrast responses
versus temporal frequency. This ratio strongly increases at
higher temporal frequencies for cortical responses in every
case except for that of the rate model without depression (Fig.
10A). That case is the only one that lacks any of the three
mechanisms of contrast-dependent changes in membrane time
constant, synaptic depression, and spike-rate adaptation. Add-
ing depression alone (Fig. 10B, rate model) or membrane time
constant changes alone (Fig. 10A, spiking model, no adapta-
tion) suffices to give contrast-dependent enhancement of high-
frequency responses. Addition of spike-rate adaptation in the
spiking model tends to eliminate any relative enhancement of
lower frequencies while preserving such enhancement at
higher frequencies. Synaptic depression also suppresses the
contrast-dependent differences between LGN input conduc-
tances, making different contrasts appear more alike to the
cortical cell. This reduces the strength of contrast-dependent
response enhancement at all temporal frequencies.

We see at best only a weak shift in the peak of the temporal
frequency tuning curve with increasing contrast. At present,
there are no experimental data as to whether LGN-recipient
cells in cat layer 4 show such a shift in peak. If they do not, but
instead show only a relative increase in responses to higher
temporal frequencies at higher contrast, this could be sufficient
to induce shifts in the tuning peaks of downstream cells.

Saturation of responses with increasing contrast

Last we examined the saturation of cortical responses with
increasing contrast (Fig. 11). Even in the absence of depression
or spike-rate adaptation, model cortical responses tend to sat-
urate somewhat earlier than their LGN inputs, particularly at
lower temporal frequencies (Fig. 11B). If either pulse or train
depression is active, saturation occurs significantly earlier than
in either the LGN inputs or the models without depression.
(The one exception is at the highest temporal frequency of the
spiking model, for which responses are small and the measure
of saturation probably inaccurate.) Moreover, clearly in the
depression cases, and also somewhat in the examples lacking
depression, there is a tendency for responses to higher temporal
frequencies to saturate later than responses to lower temporal

FIG. 9. The iceberg effect: the appearance of higher temporal frequency
responses at higher contrasts.A: temporal frequency tuning curves for “flat” F1
inputs of 15, 30, 60, and 90 Hz (prerectification values), color-coded from light
gray to black, respectively, for a spiking model simulation in which adaptation
was present, but synaptic depression was not. Error bars indicate SDs of the
means across 29 cells. Note that responses to 12-Hz input gratings are present
for input F1s of 60 and 90 Hz, but essentially absent for input F1s of 15 and
30 Hz. Input F1 of 30 Hz corresponds roughly to 10% contrast, 90 Hz roughly
to 80% contrast (see Fig. 10).B: intracellular voltage traces, for a randomly
chosen cortical cell, in response to a single presentation of a 12-Hz temporal
frequency grating at each of the 4 F1 input levels used inA (corresponding, at
12 Hz, to contrasts of 3.9, 7.8, 18.7, and 41.2%). Spiking responses in the cell
have been turned off; spiking threshold is indicated by the dotted line. Synaptic
conductances for LGN inputs and nonspecific in vivo “back-ground” inputs
(seeAPPENDIX A) were turned on attime 0. A blank stimulus was presented for
the 1st 0.5 s of the trace, after which the grating stimulus appeared. Note that,
for input F1 values of 15 or 30 Hz, the membrane voltage never crossed spike
threshold. For higher input F1 values (60 or 90 Hz), the membrane potential
did reach threshold, as corroborated by the increase in the spiking response
indicated inA. Traces were achieved as follows: all conductances onto a cell,
including spike-rate adaptation conductances, were recorded during simula-
tions of A. These conductances were then “played back” to the cell with
spiking turned off.
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frequencies: for cases with depression, C50 values increase
monotonically with temporal frequency if the lowest temporal
frequency is excluded. The same pattern is seen in the V1 cell
of Fig. 4, although the model C50 values are somewhat lower
than those measured by Albrecht.

The contrast saturation effects induced by synaptic depres-
sion can be readily understood. As demonstrated by Abbott et
al. (1997) and Tsodyks and Markram (1997), in the presence of
depression, as a presynaptic neuron’s firing rate increases to
values much larger than 1/t (wheret is the time constant of
recovery from depression), the overall postsynaptic effect of its
synapses (proportional to rate times efficacy) saturates at a

plateau value. The postsynaptic cell cannot “see” further in-
creases in rate. Thus as LGN firing rates increase with contrast,
the impact on the cortical cells will plateau earlier than it would
without depression. This saturation occurs at higher contrasts
for higher temporal frequencies, because depression more
strongly suppresses lower than higher-frequency inputs.

As can be seen in the table, however, cortical responses can
saturate at lower contrasts than LGN even when depression is
absent. This results from the inhibition in our circuit model.
Because the cortical response is determined by a thresholded
version of the membrane voltage, for a sinusoidal input grating
the response of the cortex can be largely understood from the

FIG. 10. The contrast dependence of temporal frequency tuning for different outputs of the rate and spiking models.X-axes:
temporal frequency.Y-axes: fortop rows,F1 of summed LGN input to a simple cell (measured in Hz for the rate model and in nS
for the spiking model); for all other plots, F1 of excitatory simple cell firing response, measured in spikes per second. Two types
of LGN inputs were used. Model responses to “flat” LGN inputs are indicated by dashed lines; responses to experimentally
measured “Sclar” LGN inputs, Fig. 3A (Sclar 1987), are indicated by solid lines. Gray lines show responses to 10% contrast
(“Sclar”) or LGN response F1 of 30 (“flat”), while black lines indicate responses to 80% contrast or F1 of 90. Note that the F1
values of the flat inputs are set before LGN outputs are calculated; i.e., they are “prerectification” values (seeAPPENDIX A). Insets:
responses at high-input level divided, frequency-by-frequency, by low input level responses. For each ofA andB: left columnshows
rate model,right columnspiking model;top rowshows LGN input to simple cell,middle rowshows simple-cell firing responses
without spike-rate adaptation currents, andbottom rowshows simple-cell spiking responses with spike-rate adaptation currents in
excitatory cells (spiking model only).A: no synaptic depression.Top row: because depression is absent, conductances very closely
follow the temporal frequency dependence of LGN response amplitudes.Middle row: because of filtering by the membrane time
constant at higher, but not lower, temporal frequencies (see text), as well as inhibition in the model circuit, both types of model
show low-pass behavior, as well as a relative amplification of high temporal frequency responses with contrast (insets). Bottom row:
note the band-pass nature of the response induced by spike-rate adaptation, in addition to the relative amplification of high temporal
frequencies (inset). Note thatbottom row,dashed lines ofA is the same data as in Fig. 9 for F15 30 and F15 90. B: “pulse”
depression.Top row: with depression present, LGN input conductances no longer closely follow the temporal frequency
dependence of LGN response amplitudes; low-frequency responses show a relative attenuation, even for “flat” inputs.Middle,
bottom rows: cortical outputs are correspondingly band-pass and show relative amplification of high temporal frequencies. Rate
model plots include results only for parameter sets that satisfied experimental constraints (seeAPPENDIX A) at every temporal
frequency. There was 1 parameter set for no depression and 3 for pulse depression (plots show average over parameter sets).
Depression in the rate model was incorporated at all synapses (G1 I 1 E, Fig. 7). In all cases, spiking model results show averages
over 29 cells. All error bars indicate SDs.
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peak membrane voltage. We estimate this peak as the sum of
the mean voltage and the modulation amplitude, or first har-
monic, of the voltage. In the absence of inhibition, this peak
voltage closely follows the modulation of the LGN input:

tuning curves of peak voltage and of LGN modulation show
very similar C50s under various conditions (data not shown).
However, when inhibition is added, the peak voltage can show
C50 values that are lower than the corresponding LGN values,
because the inhibition in the model both decreases the slope of,
and adds a constant negative DC offset to, the curve of peak
voltage versus contrast. The DC offset originates from the
background firing of the LGN, which, because the cortex is
inhibition dominated, is net inhibitory. By both flattening and
shifting the cortical response curve closer to zero, inhibition
effectively causes cortical neurons to saturate sooner than their
inputs.

D I S C U S S I O N

We have established that a simple circuit model of cat layer
4 that achieves contrast-invariant orientation tuning can also
account for three c-d nonlinearities in simple cell responses to
sinusoidal stimuli: c-d phase advance, c-d changes in the
shapes of temporal-frequency tuning curves, and contrast sat-
uration. These response nonlinearities arise locally (that is, in
a circuit in which both excitatory and inhibitory intracortical
connections are primarily between cells of nearby preferred
orientations) as a result of the many nonlinear elements present
in the LGN responses and cortical circuitry. The observed c-d
phase advance can be largely or entirely accounted for by the
combined effects of geniculocortical and intracortical synaptic
depression, spike-rate adaptation currents in cortical cells, and
c-d changes in cortical cell conductance. The greater ratio of
high-contrast to low-contrast responses for high versus low
temporal frequencies arises from the interaction of these non-
linearities with the spike threshold, along with the dominance
of inhibition in our model circuit. Finally, the inhibition in our
model circuit causes cortical cell responses to saturate at
slightly lower contrasts than do the LGN inputs, while synaptic
depression causes a much stronger decrease in cortical saturat-
ing contrast relative to LGN.

These results were derived in the context of a circuit model
that has previously been shown to account for a wide variety of
observations related to orientation tuning in cat layer 4 (Troyer
et al. 1998). However, only some of the present results depend
on this circuit model. The circuit model was critical to estab-
lishing that the c-d nonlinearities studied here could coexist
with the more linear-like behavior of contrast-invariance of
orientation tuning. In addition, the relationships of inhibition
and excitation in the circuit model are critical to the threshold
effect underlying the c-d changes in temporal frequency tun-
ing: it is crucial that inhibition is dominant so that the mean
input is subthreshold, since suprathreshold mean input would
cause small changes in input modulation to have only small
effects on responses; and it is crucial that inhibition is spatially
opponent to excitation, so that excitation can periodically drive
responses to a preferred-orientation grating despite this overall
dominance of inhibition. The circuit model used is not critical
to the mechanisms of c-d phase advance and contrast saturation
explored here, although the inhibition in the model circuit does
contribute to contrast saturation.

Coexistence of linear and nonlinear response properties

We have emphasized that it is important not simply to
explain nonlinear response properties, but to understand how

FIG. 11. Model data for the temporal frequency dependence of contrast
saturation.A: model contrast saturation curves for spiking model (averages
over 29 cells) with spike-rate adaptation, with no depression and with pulse
depression. Light gray to dark gray: increasing temporal frequency.B: satu-
rating contrast (C50 in fit of Naka-Rushton curve to contrast saturation curve)
vs. temporal frequency for LGN cell (Sclar 1987) and cortical cell (Albrecht
1995) of Fig. 4 (dark bars) and for model cells with no depression, pulse
depression, or train depression (white, light gray, dark gray) in rate model
(solid bars) or spiking model (hatched bars). Horizontal line shows mean C50

from over 100 cat V1 simple cells, each at or near its optimal temporal
frequency, reported in Albrecht (1995). Results for pulse and train depression
are qualitatively similar. As described in the text, cortical responses tend to
saturate at lower contrasts than do their LGN inputs, and responses to higher
temporal frequencies saturate at higher contrasts. Depression in the rate model
was incorporated at all synapses (G1 I 1 E, Fig. 7).
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they can coexist with “linear-like” properties such as contrast-
invariant orientation tuning. In particular, how can the circuit
show contrast invariance in the tuning for orientation at each
temporal frequency, and yet show contrast dependence in the
tuning for temporal frequency at the preferred orientation?

The answer is that key nonlinearities within the circuit vary
with temporal frequency, but not with orientation. As noted
previously, each grating presented to the circuit gives rise to
both a mean voltage and a voltage modulation about that mean.
A change in orientation away from the preferred does not alter
the mean input to a cell, but only decreases the input modula-
tion. The contrast-induced growth in the mean response is
converted into inhibition that offsets the concomitant growth in
the modulations, which is roughly proportional across orienta-
tions, yielding contrast-invariant orientation tuning. The situ-
ation is different for temporal frequency: both the mean and the
modulation of the input are altered by a change in temporal
frequency. Synaptic depression strongly suppresses the input
mean relative to the input modulation at low temporal frequen-
cies, but not at higher temporal frequencies (Krukowski 2000).
Furthermore, an increase in stimulus contrast causes greater
amplification of input modulations at higher versus lower tem-
poral frequencies, because of c-d decreases in membrane time
constant as well as depression and spike-rate adaptation. Fi-
nally, LGN input firing rates show a slightly greater contrast-
dependent increase at high than at low temporal frequencies.
Thus the contrast invariance of orientation tuning and the
contrast dependence of temporal frequency tuning follow from
the frequency- but not orientation-dependent nature of the
circuit nonlinearities.

Limitations of the present work

Several of our explanations depend on the existence of
sufficient synaptic depression in vivo. One study reported that
cortical depression appears weaker in vivo than in vitro
(Sanchez-Vives et al. 1998), but speculated that this may result
simply from the greater baseline rate of depression in vivo due
to background activity, an effect included in our modeling.
Support for a functional depression-like mechanism in vivo
was reported by Nelson (1991a,b): responses in cat V1 were
suppressed by repetition of visual stimuli in a manner consis-
tent with both synaptic depression and a presynaptic origin. We
attempted to control for the uncertainty in the strength of
depression by studying two different in vitro parameter sets;
they showed little difference in behavior except that the train
parameters reduced the difference between low- and high-
contrast response amplitudes.

The model weakly suggests that geniculocortical depression
may be less strong than in either of these parameter sets.
Geniculocortical synaptic depression with these parameters,
and particularly with the train parameters, led model cells to
saturate too early, relative to cortical cells (Fig. 11). However,
nonlinearities in LGN temporal response profiles beyond the
simple rectification considered here might alter this result. In
particular, LGN responses tend to occur over significantly less
than a half-cycle of a sinusoidal stimulus (e.g., Reich et al.
1997); this would be likely to affect response saturation simi-
larly to going to a higher temporal frequency, for which satu-
ration occurs at higher contrasts.

The similarity of results in both the simpler rate model and

the more elaborate spiking model, and the ability to understand
their differences in terms of the specific additional nonlinear
mechanisms present in the spiking model, give confidence that
the understandings achieved here of the contribution of each
nonlinear mechanism to each nonlinear response property are
fairly robust; i.e., independent of specific implementation. Fur-
ther mechanisms not considered here may also play a role, such
as further nonlinearities in LGN responses, other active mem-
brane conductances beyond spike-rate adaptation (McCormick
1990), nonlinearities of dendritic integration (e.g., Larkum et
al. 1999), synaptic facilitation, which is seen at many excita-
tory synapses onto inhibitory interneurons (Thomson et al.
1993), or the presence of NMDA receptors, which can alter
temporal frequency tuning in our model (Krukowski 2000).
These uncertainties limit our ability to make strong quantitative
predictions. But the present results establish the viability of a
local explanation of contrast-dependent nonlinearities, and
they allow qualitative tests, discussed further below.

Applicability of the model to other species

Contrast-dependent nonlinearities have also been studied in
monkeys. Data there, although also limited, seem qualitatively
consistent with those in cats (Albrecht 1995; Carandini and
Heeger 1994; Carandini et al. 1997; Hawken et al. 1992).
However, response properties in the LGN-input-recipient por-
tions of monkey layer 4 are quite different from those in cat
layer 4: while cat layer 4 consists very largely of classical
simple cells [cells with aligned and oriented, segregatedON and
OFF subregions and strong orientation tuning (Bullier and
Henry 1979; Gilbert 1977)], monkey layer 4C has few such
cells (Blasdel and Fitzpatrick 1984; Hawken and Parker 1984).
Thus our model circuit is unlikely to apply directly to mon-
keys. As we discussed above, many of our explanations of c-d
nonlinearities are independent of the circuit studied. In the
cases where the circuit plays a role, the critical elements of the
circuit are the dominance of inhibition and its opponency with
excitation. We have conjectured that these may be general
principles of cortical layer 4 circuitry (discussed in Troyer et
al. 1998), and so in particular might also characterize layer 4 of
monkey V1.

Experimental tests of the model

The present explanations of c-d phase advance can be di-
rectly tested by blocking spike-rate adaptation and/or synaptic
depression and determining whether this decreases c-d phase
advance. Spike-rate adaptation can be blocked by several phar-
macological agents (Baskys 1992; Nicoll 1988). If applied
iontophoretically to individual cells, these should reduce c-d
phase advance [although spike-rate adaptation may not be as
strong in vivo as in vitro (Tang et al. 1997)]. Selective inter-
vention against synaptic depression is more difficult (see Dis-
cussion in Chance et al. 1998).

The combined role of LGN response nonlinearities and
geniculocortical synaptic depression in both c-d phase advance
and contrast saturation could be assayed in intracellular record-
ings from simple cells, by using electrically evoked cortical
suppression (Chung and Ferster 1998) to isolate geniculocor-
tically driven currents during presentation of sinusoidal grating
stimuli. By comparing c-d response properties of these input
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currents to those of the cell’s voltage response with the cortical
circuit intact, the degree of involvement of cortical mecha-
nisms could be assessed. Comparisons to average LGN firing
properties might be used to assay the role of geniculocortical
synaptic depression; we would predict that these input currents
would show greater c-d phase advance and earlier contrast
saturation than LGN firing rates.

The explanation of c-d changes in temporal frequency tuning
could be tested by measurements of the membrane potential in
response to high-temporal-frequency gratings of increasing
contrast. In cells showing a c-d change in the shape of temporal
frequency tuning curves favoring higher temporal frequencies,
we predict a threshold effect: as contrast increases, the spiking
response should increase faster than the voltage response.

Other experimental work suggested by the model

As we emphasized in the section onEXPERIMENTAL FINDINGS

ADDRESSED, the data on response nonlinearities remain quite
sparse. None of the data in cats are known to be from layer 4
(although most are from identified simple cells); it will be
important to determine the degree to which layer 4 cells exhibit
these nonlinearities. LGN Y cells show stronger response
nonlinearities than X cells, emphasizing the importance of
correlating nonlinear cortical response properties to the pro-
portion of X or Y input received by a cell. LGN and cortical
response nonlinearities have not been studied under the same
conditions or in the same animal, with the exception of one
study in monkeys (of contrast saturation, Sclar et al. 1990).
This is particularly important for temporal response properties,
which may be quite mutable by different types of anesthesia:
increases in inhibition, as induced by barbiturates, can cause a
lower temporal frequency cutoff in responses at a given con-
trast in our circuit model, while blockade of NMDA receptors,
e.g., by ketamine, can have variable effects on temporal fre-
quency tuning (Krukowski 2000).

Further data on the dependence of c-d phase advance on
temporal frequency and stimulus orientation, particularly in cat
layer 4, could limit potential parameters and mechanisms.
Albrecht (1995) reported a weak positive correlation between
c-d phase advance and temporal frequency across cat and
monkey simple cells. We do not see such dependence in our
average results, but individual parameter sets can show such
dependence (e.g., Fig. 6). Similarly, data for a few cells in
monkey V1 (Carandini et al. 1997) showed little dependence of
c-d phase advance on stimulus orientation. While average
phase advance in the rate model showed no dependence on
stimulus orientation for orientations that give appreciable re-
sponse, we have not carefully examined the parameter depen-
dence of this result, and orientation dependence would be
expected for components of c-d phase advance due to adapta-
tion or conductance changes, which were not included in the
rate model.

Comparison to other models

The importance of understanding the nonlinearities studied
here has been emphasized by studies of the normalization
model (Albrecht and Geisler 1991; Carandini et al. 1997, 1998;
Heeger 1992). These studies have strongly influenced the
field’s thinking: as a phenomenological description of cortical

processing, the normalization model integrates a wealth of data
in a simple way.

However, as a mechanistic explanation, this model is prob-
lematic. First, it assumes that simple cells receive input that is
scaled linearly by changes in contrast, e.g., the input has
contrast-invariant orientation tuning; it then argues that addi-
tion of divisive or “normalizing” inhibition will explain re-
sponse nonlinearities without disturbing input tuning for spatial
properties such as orientation. We have instead emphasized
that both the LGN input and the circuit are nonlinear, e.g., key
nonlinearities in LGN responses are the c-d growth of the
mean, saturation of the F1, and advance of the response phase.
Second, the normalization model’s explanations of temporal
nonlinearities require unrealistically high membrane time con-
stants. The model proposes that the phase advance and the
high-temporal-frequency cutoffF at a given contrast are de-
termined by the membrane time constantt. c-d nonlinearities
are explained by decreases int with increasing contrast, in-
duced by the increase in membrane conductance from the
normalizing inhibition. However, V1 cells often show low-
contrast [or even high-contrast (Saul and Humphrey 1992)]
cutoff (frequency showing little or no response) atF 5 10–15
Hz (Albrecht 1995; Carandini et al. 1997, Fig. 7). For such a
cutoff to be simply due tot, one must havet . 1/F, i.e.,
greater than 66–100 ms (see footnote 2). Yet time constants of
cortical cells in vivo are only 15–24 ms (Hirsch et al. 1998) at
rest, and can only decrease under visual stimulation. Similarly,
a 20° c-d phase shift in response to a 2-Hz stimulus (a temporal
advance of 28 ms) would require a c-d decrease int of 28 ms.3

Such a large decrease between 10 and 80% contrast seems
unlikely.

The normalization model also requires divisive inhibition
that depends only on contrast, independent of orientation. This
is necessary, for example, to explain contrast saturation or c-d
phase shifts of responses to nonpreferred stimuli. Experimental
data now show that there is a contrast-dependent conductance
increase that, at preferred orientations, can be as high as two-
or threefold, but which is tuned for orientation (Anderson et al.
2000; Borg-Graham et al. 1998; Hirsch et al. 1998). The
corresponding reduction in time constant can certainlycontrib-
uteto phase advance (Fig. 8, “no A, no D”) and to the threshold
effect that we argue explains contrast-dependent changes in
temporal frequency tuning. However, any such contribution
will have orientation tuning like that of the conductances.
Another significant problem is that the normalization model
assumes that shunting inhibition will give this divisive effect,
whereas recent theoretical studies suggest that the effect will be
subtractive rather than divisive (Holt and Koch 1997).

Another model (that of Chance et al. 1998) independently
arrived at some of the same qualitative ideas that we have
developed here (see Chance et al. 1997; Priebe et al. 1997). In
particular, they also pointed out that synaptic depression of
feed-forward synapses could contribute to c-d phase advance,
although they found,4° of c-d shift per 3 octaves of contrast
at 2 Hz (their Fig. 2E) and, curiously, did not find any c-d shift
for temporal frequencies of 8 Hz or higher. They did not
address the other nonlinear response properties or mechanisms

3 For 2pft ! 1, e.g.f ! 8 Hz for typical cortical resting time constants in
vivo of t 5 20 ms (Hirsch et al. 1998), arctan (2pft)/2pf ' t, hence the phase
advance (footnote 1) simply becomest0 2 t1.
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addressed here and did not address the coexistence of linear-
like and nonlinear response properties.

Conclusion: origins of nonlinear and linear response
properties

As the circuit model presented here has emphasized, many
aspects of cortical processing are inherently nonlinear, includ-
ing spike thresholds, adaptation, synaptic depression, conduc-
tance effects, and the contrast dependence of the input. On the
other hand, many spiking responses of cat simple cells can be
understood roughly in terms of linear filtering of the stimulus
(e.g., DeAngelis et al. 1995; Sclar and Freeman 1982; Skottun
et al. 1987, 1991a). Based on these findings, one theoretical
approach is to consider simple cells as a rectified linear filter,
and to seek nonlinear corrections that can give a more complete
account of spiking responses (e.g., Albrecht and Geisler 1991;
Carandini et al. 1997, 1998).

While this approach is useful in describing spiking behavior,
we suggest that when mechanistic explanations are sought, the
problem should be turned on its head. Simple cell responses
must be understood in terms of cortical cells and circuits,
which are inherently nonlinear. The greatest difficulty is ex-
plaining why the behavior of the cortical circuit appears linear
in key respects. For example, understanding how orientation
tuning comes to be contrast invariant has been a key problem
for understanding V1 circuitry (Ben-Yishai et al. 1995; Somers
et al. 1995; Troyer et al. 1998). As we have seen here, the
particulars of the circuitry that achieve this linear-like behavior
for orientation tuning need not generalize to other response
properties, such as temporal frequency tuning. Thus we suggest
that the key mechanistic question is not why simple-cell prop-
erties are nonlinear, but rather how they come to appear linear.
Once the latter has been explained in a circuit model, one can
see to what extent other, nonlinear behavior may emerge
naturally from such biological nonlinearities as thresholds,
synaptic depression, adaptation, and conductance changes.

A P P E N D I X A : D E T A I L S O F C O M P U T A T I O N A L

M E T H O D S

Here we present the full details of the methods necessary to repli-
cate our work.

Elements in common to both rate and spiking models
ARCHITECTURE. Both rate and spiking models are structured as
follows. There are geniculocortical (G) synaptic weights connecting
the LGN to the cortex, and two types of intracortical weights, exci-
tatory-to-excitatory (E) and inhibitory-to-excitatory (I) (Fig. 1). The
intracortical connections instantiate the cat layer 4 circuit model
proposed in Troyer et al. (1998).

GENICULATE RESPONSES. Geniculate firing rates in response to
drifting sinusoidal stimuli are modeled, as in Troyer et al. (1998), as
linear rate modulations (rectified at 0 Hz) about background rates of
15 and 10 Hz forON andOFF cells, respectively.ON cell modulations
were at the stimulus phase, andOFF cell modulations lagged by 180°.
Prerectification modulation amplitudes were chosen for each contrast
and temporal frequency so that the first harmonic (F1) of the rectified
rate modulations matched data from Sclar (1987, Fig. 1),4 except in

“flat” simulations, in which these amplitudes were set to four arbitrary
values (15, 30, 60, and 90 Hz) that were held constant across temporal
frequencies. To assign contrast valuesC to the flat amplitudes, we
used matlab’s “curvefit” function to fit the prerectification F1 values
R at each temporal frequency forON cells (matched to the Sclar data)
with Naka-Rushton curves (Albrecht 1995)

R~C! 5 RmaxC
n/~Cn 1 C50

n ! (A1)

From the fit curves we found the corresponding contrasts for each
prerectification F1 at each temporal frequency. We then combined the
data derived from flat inputs with those from Sclar inputs to generate
contrast saturation curves (Fig. 4). Experimental contrast-saturation
data were also fit to Naka-Rushton curves using curvefit.

The prerectification F1s as chosen above were further modified by
use of the center-surround LGN spatial filter (Linsenmeier et al. 1982;
Peichl and Wassle 1979) as in Troyer et al. (1998). All gratings were
shown at the preferred spatial frequency of the model cortical cells
[0.635°/cycle (Troyer et al. 1998)], so the prerectification modulation
amplitude was reduced by the amount predicted by this filter relative
to its value at the preferred spatial frequency of the LGN cell spatial
filter (0.54 cycle/deg).

CORTICAL RFS. The distribution of LGN synaptic weights to a
simple cell was described by a Gabor function (Jones and Palmer
1987), as in Troyer et al. (1998), “default” parameters.

SYNAPTIC DEPRESSION. The equations used to model synaptic de-
pression are described inAPPENDIX B. We examined synaptic depres-
sion in each of the three types of weights (G, E, and I) in the rate
model, but only in the G weights in the spiking model. In both models,
weight values must be changed when depression parameters are
changed [to maintain the network in a stable range, Troyer et al.
(1998, Fig. 13)]. Exploration of such parameter dependence is com-
putationally expensive in the spiking model, so we did not explore
intracortical depression in that model.

Rate model

In the rate model, the LGN was structured as a 313 31, 6.8°3 6.8°
retinotopic grid of cells, with retinotopic position varying linearly
across the grid.ON cells were positioned at the vertices of the grid,
while OFF cells lay at the center of each square within the grid; this
offset is motivated by Wassle et al. (1981). The choice of a 313 31
grid in the rate model, versus 303 30 grid in the spiking model, was
made simply so that a singleON cell would lie at the center of the grid.

We examined 192 model cortical simple cells (96 excitatory and 96
inhibitory) located at the single retinotopic position defined by the
central LGNON neuron. Each set of 96 cells represented each com-
bination of 12 evenly spaced orientations (at 8–173°, to minimize grid
discretization error) and 8 evenly spaced spatial phases (0–315°).
Responses were studied to gratings of optimal spatial frequency and
with orientation 38° (again chosen to minimize discretization effects).
Responses for a given parameter set are the average over responses of
all eight excitatory cells preferring 38°.

In the rate model, geniculocortical weights were set to the value of
the Gabor at the corresponding retinal position, where positive (neg-
ative) values of the Gabor correspond to weights fromON (OFF) inputs.
Connections between cortical cells were correlation-based, as in

4 Throughout, we normalize the F1 to equal the amplitude of the sinusoidal
component at the frequency of the grating stimulus. If the LGN input has
temporal frequencyv, this normalized F1 is given by the sum of the ampli-

tudes of thev and2v frequency components of the Fourier transform, when
that transform is normalized so that the F0 or DC is the mean rate; this
normalization is standard in neurophysiology (Skottun et al. 1991b). We have
previously (Troyer et al. 1998) incorrectly stated that this normalization of the
F1 requires that the Fourier transform have an extra factor of two relative to the
normalization that makes the F0 equal to the mean rate. This mistake was due
to our neglect of the2v component, which has equal amplitude to thev
component; the factor of two is accounted for by including the negative as well
as positive frequency components.
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Troyer et al. (1998) withnpow 5 5, except that there was no stochas-
ticity: connection strengths were simply set equal to the connectivity
function C(a, b) defined in that reference.

Dynamically, neurons in the rate model obeyed the following
equations. Letr k

I/E(t) 5 the firing rate of inhibitory/excitatory cellk at
time t, vk

I/E(t) 5 the voltage of inhibitory/excitatory cellk at time t,
tm

I/E 5 the time constant of the inhibitory/excitatory cell membrane,
Gk(t) 5 the geniculocortical input to cellk at time t, wkj

e4i/e(t) 5 the
synaptic efficacy of the connection from inhibitory/excitatory cellj to
excitatory cellk at time t, uI/E 5 the firing threshold for inhibitory/
excitatory cells, andfloor 5 a floor on the membrane voltage of the
cells (see below). The firing rate for excitatory or inhibitory cellk is

r k
E~t! 5 @v k

E~t! 2 uE#1

r k
I ~t! 5 @v k

I ~t! 2 uI #1

where [x]1 5 x, x . 0; 5 0, otherwise. The activity update for
inhibitory cell k is

t m
I dv k

I

dt
5 2 v k

I ~t! 1 Gk~t!

The inputs to excitatory cellk from geniculocortical, inhibitory, and
intracortical excitatory sources are

nk~t! 5 Gk~t! 2 O
j51

N

wkj
e4i~t!r j

I~t! 1 O
j51

N

wkj
e4e~t!r j

E~t!

where N is the number of excitatory or inhibitory neurons. The
activity update for the excitatory cellk is

tm
E dv k

E

dt
5 2v k

E~t! 1 nk~t!, v k
E . floor (A2)

5 @2v k
E~t! 1 nk~t!#

1, v k
E 5 floor (A3)

Outside of the (fixed)f andt values for depression, the rate model
had eight parameters: the membrane time constants, the firing thresh-
olds, and the gains of G, I, and E weights, as well as the voltage floor.
The gains were scalars representing the summed synaptic strength of
each type (G, I, E) received by each cell. This normalization was
achieved by multiplicatively scaling all weights of a given type on a
given cell. The voltage floor was the value below which any neuron’s
membrane potential was not allowed to go; if the membrane potential
attempted to drop below the floor, it was clamped to the floor poten-
tial. This was included merely to represent the lower bound on the
membrane voltage imposed in real neurons by the potassium reversal
potential. This floor was somewhat arbitrarily set to230, but this
value was not critical; the behavior of the model was quantitatively
similar for a floor value of275, and only marginally different for a
very “depolarized” floor value of25.

Outputs of the model (excitatory cells only) were determined and
averaged across the appropriate cells. The seven parameters other than
the floor were then determined by searches through this seven-param-
eter space for all parameter combinations that satisfied the following
criteria:

1) tm
E . tm

I (McCormick et al. 1985).
2) uE . uI (McCormick et al. 1985).
3) Standard deviation of the orientation tuning curve,0.20° at all

contrasts (defined as=¥i ri(ui 2 u0)
2/¥i ri, whereri is the response to

the ith orientationui, and u0 is the preferred orientation of the cell
studied).

4) Invariance of orientation tuning width with contrast (Sclar and
Freeman 1982), defined as a ratio of the standard deviation of a
Gaussian fit to the orientation tuning curve at low (10%) and high
(80%) contrast between 4:5 and 5:4.

5) “Amplification ratio” .1 and,5 for both 10 and 80% contrast
preferred orientation sinusoidal gratings (defined as ratio of F1 of
voltage response with full cortical circuitry intact to F1 of voltage
response induced by geniculocortical inputs alone); these values are
comparable to the limits suggested in Ferster et al. (1996) for re-
sponses to 2 Hz, 64% contrast drifting sinusoidal gratings at the
preferred orientation.

6) Mean cortical firing rates between 10 and 30 Hz for preferred
orientation stimulus at 80% contrast.

Parameter searches were performed separately for each temporal
frequency of stimulation. In Fig. 7, we show all parameter sets that
satisfied these criteria at a given temporal frequency, without regard
for whether the criteria were also satisfied at other temporal frequen-
cies. All other figures show only those parameter sets that satisfied the
criteria across all temporal frequencies, except that requirements on
F1 ratios and mean cortical firing rates at high contrast were not
enforced for temporal frequencies.8 Hz or for the flat F1 value of 15
Hz (these exceptions were made because responses at these frequen-
cies and for these inputs were too small to meet the criteria). For the
“no depression” case, the low bound on mean firing rate at high
contrast was also relaxed slightly (to.9.5 Hz) to allow generation of
a contrast saturation curve (Fig. 4).

The range of values of the seven parameters over which we con-
ducted our search was as follows. For four of these parameters, this
range varied with the location(s) of depressing synapses; for example,
the relative strength of inhibition required to prevent cortical runaway
was much less when intracortical excitatory depression (E depression)
was present. For cases in which E depression was present, we
searched through all combinations of the following values for these
four parameters:

1) uE 5 2, 4, 6
2) G gain 5 1.0, 2.0, 4.0, 8.0
3) I 3 E gain 5 0.15, 0.25, 0.35, 0.45
4) E3 E gain 5 0.06, 0.09, 0.12, 0.15
When E depression was absent, we instead searched through all

combinations of the following values for these four parameters:
1) uE 5 3, 6, 9
2) G gain 5 0.5, 1.0, 2.0, 4.0
3) I 3 E gain 5 0.25, 0.35, 0.45, 0.55
4) E3 E gain 5 0.02, 0.04, 0.06, 0.08
In all cases, we searched through all combinations of the following

values for the remaining three parameters:
5) tm

E 5 8, 12, 16 ms
6) tm

I 5 tm
E/2

7) uI 5 1, 2, 3, withuI , uE

The number of combinations searched was 1,344 when E depression
was present, 1,536 when it was absent. Note that we biased our
selection toward smaller membrane time constants than those reported
in vitro (20 ms for excitatory, 12 ms for inhibitory neurons) (McCor-
mick et al. 1985), and in vivo in the absence of a stimulus (15–24 ms
for excitatory cells) (Hirsch et al. 1998), to account for the additional
conductances opened during stimulation.

The c-d phase advance was found by subtracting the phase of the F1
of the cortical response to 10% contrast gratings from that to 80%
contrast gratings. As most simulations were of 2 s duration, phase
analysis was performed on the last 500 ms, when the geniculocortical
and intracortical excitatory depressing synapses would have reached
steady state. [Intracortical inhibitory synapses fit to the train data (t 5
1,017 ms) would not have reached steady state, but the influence of
the inhibitory depression is weak. We found in several example cases
that examining the last second of 6-s runs caused negligible changes
in results.]

The activity and depression equations were discretized using simple
first-order Euler methods and 2-ms bins. Test runs using 0.25-ms
resolution demonstrated that this bin size caused negligible changes in
our results.
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Spiking model

The spiking model was implemented as in Troyer et al. (1998). All
parameters were as in that reference except for the overall synaptic
strengths of geniculocortical and intracortical synapses. These values
were determined, after sampling the synaptic weights as just de-
scribed, by multiplying all synaptic weights of a given type (G, E, or
I) by a single constant to set the total strength of such synapses. These
values were chosen to constrain the standard deviation of the orien-
tation tuning curve to be,0.20° at all contrasts, as in the rate model,
and to ensure contrast invariance at all temporal frequencies. Synaptic
strength is defined in terms of the integrated current response induced
when the cell is voltage clamped atVthreshand all synapses of a given
type are activated once (Troyer et al. 1998). Each excitatory cell
received a total inhibitory synaptic strength of214.726 nA ms, and a
total intracortical excitatory synaptic strength of 3.112 nA ms, yield-
ing mean unitary conductance values ofg# in 5 7.59 nS andg#ex

ctx 5 0.37
nS. We used three separate values for the total geniculocortical
synaptic strength onto each cortical cell, depending on the parameters
used for geniculocortical depression: “no depression,” 3.112 nA ms,
with mean unitary conductanceg#ex

gc 5 0.32; “pulse” parameters, 8.86
nA ms, with a mean unitary conductance ofg#ex

gc 5 0.92 nS; “train”
parameters, 26.45 nA ms, with a mean unitary conductance ofg#ex

gc 5
2.7 nS. Note that we held total inhibition fixed, although we could
have reduced this value when depression was present [because de-
pression attenuates the untuned (DC) component of the geniculocor-
tical input]. Since total inhibition is a free parameter, and reducing
(increasing) inhibition broadens (tightens) both orientation and tem-
poral frequency tuning, we have some freedom to control these tuning
widths, yet remain within the experimental constraints.

The results presented here for the spiking model show model
responses to drifting gratings at 105°. After a 500-ms “blank stimu-
lus,” during which time the cortical and LGN cells fired at background
rates, a moving grating stimulus was presented for one second. Phase
advances were calculated by first constructing a histogram of re-
sponses from 10 repetitions of the same stimulus condition, and then
taking the Fourier transform of the final 500 ms of these histograms.
We compared the difference in the phase of the response to 80 and
10% contrast gratings on a cell-by-cell basis, for all excitatory neurons
with preferred orientation in the 5°-wide bin around 105° (preferred
orientations 102.5 through 107.4°); there were 29 such excitatory
neurons for the orientation map used.

A P P E N D I X B : A R A T E M O D E L O F S Y N A P T I C

D E P R E S S I O N

We model synaptic depression as in Abbott et al. (1997; see also
Tsodyks and Markram 1997): following a spike, the synaptic efficacy
is multiplied by the fractionf, where 0# f # 1, and between spikes
the efficacy recovers with time constantt toward its undepressed
value. It is clear how to model this in a spiking model, but not in a rate
model. To determine this, we first derive an equation that behaves
appropriately for the spiking model, and then derive a rate model
equation as an appropriate average of this spiking model equation.

We begin with the spiking model equation. Letw(t) be the efficacy
at timet. Let the presynaptic spike train be denoted byr(t) 5 ¥i d(t 2
ti), where presynaptic spike times are denoted asti and d(x) is the
Dirac delta function. Our desired equation is of the form

t
dw

dt
5 2w~t! 1 wmax 2 tcr~t!w~t! (B1)

wherec is a to-be-determined constant. In the absence of a presynaptic
spike (r 5 0), w decays exponentially towardwmaxwith time constant

t, as desired. The form of the last term is determined by the fact that
the change in efficacy after a spike1) is proportional to the current
value of the efficacy,w(t); 2) is proportional tor(t) (so that it is zero
in the absence of a spike, and infinite—an infinite value of dw/dt, and
thus a discontinuous change inw—in the presence of a spike). In
addition,3) the term must have the same dimensions asw, achieved
by multiplying by t, leavingc as a dimensionless constant.

The value ofc is determined as follows. Let the times infinitesi-
mally before and afterti be denotedti

2 and ti
1, respectively. Depres-

sion is represented by the equationw(ti
1) 5 fw(ti

2). To determine the
spike-induced change inw, we integrateEq. B1from ti

2 to ti
1; because

this is an infinitesimal interval, only integrands that are infinite during
that interval give a nonzero result. Becausew changes discontinu-
ously, dw/dt is infinite in the interval; so too is the term involvingr(t).
The other two terms integrate to zero and can be neglected. However,
we cannot simply integratet[cp(t)w(t)], because we do not know how
w(t) itself is changing over the interval—e.g., shouldw(t) bew(ti

1) or
w(ti

2)? To solve this, we divideEq. B1by w(t) and multiply by dt/t
before integrating, yielding5

E
w~ti

2!

w~ti
1! dw

w
5 2cE

ti
2

ti
1 O

j

d~t 2 tj!dt (B2)

or

c 5 2ln
w~ti

1!

w~ti
2!

5 2ln f (B3)

Thus our equation for synaptic depression is

t
dw

dt
5 2w~t! 1 wmax 1 t~ln f !r~t!w~t! (B4)

which can be integrated to yield

w~t! 5 w~0! expF2
t

t
1 N~t, 0! ln fG

1
wmax

t E
0

t

dt1 expF2
~t 2 t1!

t
1 N~t, t1! ln fG (B5)

whereN(t2, t1) [ *t1
t2 r(s)ds is the spike count in the interval (t1, t2).

We now derive an equation for the mean efficacy,w# (t) 5 E[w(t)],
in terms of the mean rate,r(t) 5 E[r(t)]. HereE[·] means an expec-
tation over a set of stochastic realizations. We assume the spike train
r(t) is a Poisson process with mean rater(t), so the expectation value
is over Poisson realizations of spike trains. The spike count,N(t2, t1),
is Poisson distributed with mean*t1

t2 r(s)ds. The equation forw# (t) is
found by taking the expectation value of both sides ofEq. B5,where
nonstochastic quantities can be brought outside the expectation values

w# ~t! 5 w~0! expS2
t

t
DE$exp@N~t, 0! ln f #%

1
wmax

t E
0

t

dt1 expF2
~t 2 t1!

t
GE$exp@N~t, t1! ln f #% (B6)

Thus to computew# (t), we must compute expectation values of the

5 Note that these operations yield a term,
1

t
*

ti

ti
1 wmax

w(t)
dt , which could also in

principle be nonzero, ifw(t) 5 0. However,w(t) can never reach zero for
nonzerof and finitet.
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form E[exp(ch)], whereh is Poisson-distributed with meanm

E@exp~ch!# 5 O
k50

`

P~h 5 k! exp~ck! 5 O
k50

`

exp~2m!Smk

k!
D exp~ck! (B7)

5 exp~2m! O
k50

` @m exp~c!#k

k!
5 exp~2m! exp@m exp~c!# (B8)

5 exp@2m~1 2 ec!# (B9)

Applying this result toEq. B6yields

w# ~t! 5 w~0! expF2
t

t
2 ~1 2 f !N# ~t, 0!G
1

wmax

t E
0

t

dt1 expF2
~t 2 t1!

t
2 ~1 2 f !N# ~t, t1!G (B10)

whereN# (t2, t1) is the mean number of spikes resulting between times
t1 and t2 from a Poisson process with mean rater(t).

Finally, the differential equation for dw# (t)/dt that producesEq. B10
as a solution is

t
dw#

dt
5 2w# ~t! 1 wmax 2 t~1 2 f !r~t!w# ~t! (B11)

where we have noted that the mean rater(t) 5 E[r(t)] is given by
r(t) 5 dN# (t, 0)/dt. Note that for f 5 1 (i.e., no depression), the
depression term disappears, as it should. This equation (discretized,
i.e., dw# /dt replaced byDw/Dt) serves as the update rule in the rate
model.
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BORG-GRAHAM LJ, MONIER C, AND FRÉGNAC Y. Visual input evokes transient
and strong shunting inhibition in visual cortical neurons.Nature 393:
369–373, 1998.

BULLIER J AND HENRY GH. Laminar distribution of first-order neurons and
afferent terminals in cat striate cortex.J Neurophysiol42: 1271–1281, 1979.

CARANDINI M AND HEEGERDJ. Summation and division by neurons in visual
cortex.Science264: 1333–1336, 1994.

CARANDINI M, HEEGERDJ, AND MOVSHON JA. Linearity and normalization in
simple cells of the macaque primary visual cortex.J Neurosci17: 8621–
8644, 1997.

CARANDINI M, HEEGERDJ,AND MOVSHONJA. Linearity and gain control in V1
simple cells. In:Cerebral Cortex,edited by Jones EG and Peters A. New
York: Plenum, 1998, vol. 13.

CHANCE FS, NELSON SB, AND ABBOTT LF. Effects of synaptic depression of
temporal nonlinearities in responses of model simple cells.Soc Neurosci
Abstr 23: 1266, 1997.

CHANCE FS, NELSON SB, AND ABBOTT LF. Synaptic depression and the
temporal response characteristics of V1 cells.J Neurosci18: 4785–4799,
1998.

CHENG H, CHINO YM, SMITH EL, HAMAMOTO J, AND YOSHIDA K. Transfer
characteristics of lateral geniculate nucleus X neurons in the cat: effects of
spatial frequency and contrast.J Neurophysiol74: 2548–2557, 1995.

CHINO YM, CHENG H, SMITH EL 3RD, GARRAGHTY PE, ROE AW, AND SUR M.
Early discordant binocular vision disrupts signal transfer in the lateral
geniculate nucleus.Proc Natl Acad Sci USA91: 6938–6942, 1994.

CHUNG S AND FERSTERD. Strength and orientation tuning of the thalamic input
to simple cells revealed by electrically evoked cortical suppression.Neuron
20: 1177–1189, 1998.

DEAN AF AND TOLHURST DJ. Factors influencing the temporal phase of
response to bar and grating stimuli for simple cells in the cat striate cortex.
Exp Brain Res62: 143–151, 1986.

DEANGELIS GC, OHZAWA I, AND FREEMAN RD. Spatiotemporal organization of
simple-cell receptive fields in the cat’s striate cortex. II. Linearity of tem-
poral and spatial summation.J Neurophysiol69: 1118–1135, 1993.

DEANGELIS GC, OHZAWA I, AND FREEMAN RD. Receptive-field dynamics in the
central visual pathways.Trends Neurosci18: 451–458, 1995.

FERSTER D. Orientation selectivity of synaptic potentials in neurons of cat
primary visual cortex.J Neurosci6: 1284–1301, 1986.

FERSTERD. Spatially opponent excitation and inhibition in simple cells of the
cat visual cortex.J Neurosci8: 1172–1180, 1988.

FERSTERD. X- and Y-mediated current sources in areas 17 and 18 of cat visual
cortex.Vis Neurosci4: 135–145, 1990a.

FERSTERD. X- and Y-mediated synaptic potentials in neurons of areas 17 and
18 of cat visual cortex.Vis Neurosci4: 115–133, 1990b.

FERSTERD, CHUNG S, AND WHEAT H. Orientation selectivity of thalamic input
to simple cells of cat visual cortex.Nature380: 249–252, 1996.

FERSTER D AND JAGADEESH B. Nonlinearity of spatial summation in simple
cells of areas 17 and 18 of cat visual cortex.J Neurophysiol66: 1667–1679,
1991.

GEISLER WS AND ALBRECHT DG. Cortical neurons: isolation of contrast gain
control.Vision Res32: 1409–1410, 1992.

GIL Z, CONNORS BW, AND AMITAI Y. Differential regulation of neocortical
synapses by neuromodulators and activity.Neuron19: 679–686, 1997.

GILBERT CD. Laminar differences in receptive field properties of cells in cat
primary visual cortex.J Physiol (Lond)268: 391–421, 1977.

HAWKEN MJ AND PARKER AJ. Contrast sensitivity and orientation selectivity in
lamina IV of the striate cortex of old world monkeys.Exp Brain Res54:
367–372, 1984.

HAWKEN MJ, SHAPLEY RM, AND GROSOFDH. Temporal frequency tuning of
neurons in macaque V1: effects of luminance contrast and chromaticity.
Invest Ophthalmol Vis Sci Suppl33: 955, 1992.

HEEGERDJ. Normalization of cell responses in cat striate cortex.Vis Neurosci
9: 181–198, 1992.

HIRSCHJA, ALONSOJ-M, REID RC,AND MARTINEZ LM. Synaptic integration in
striate cortical simple cells.J Neurosci18: 9517–9528, 1998.

HOLT GR AND KOCH C. Shunting inhibition does not have a divisive effect on
firing rates.Neural Comput9: 1001–1013, 1997.

HOLUB RA AND MORTON-GIBSON M. Response of visual cortical neurons of the
cat to moving sinusoidal gratings: response-contrast functions and spatio-
temporal interactions.J Neurophysiol46: 1244–1259, 1981.

HUBEL DH AND WIESEL TN. Receptive fields, binocular interaction and func-
tional architecture in the cat’s visual cortex.J Physiol (Lond)160: 106–154,
1962.

2148 A. KAYSER, N. J. PRIEBE, AND K. D. MILLER

Downloaded from journals.physiology.org/journal/jn (096.224.087.234) on July 30, 2020.



JONES JPAND PALMER LA. An evaluation of the two-dimensional Gabor filter
model of simple receptive fields in cat striate cortex.J Neurophysiol58:
1233–1258, 1987.

KAPLAN E, PURPURA K, AND SHAPLEY RM. Contrast affects the transmission of
visual information through the mammalian lateral geniculate nucleus.
J Physiol (Lond)391: 267–288, 1987.

KRUKOWSKI AE. A Model of Cat Primary Visual Cortex and Its Thalamic Input
(PhD thesis). San Francisco, CA: University of California, 2000.

KRUKOWSKI AE AND MILLER KD. Thalamocortical NMDA conductances and
intracortical inhibition can explain cortical low-pass temporal tuning.Nature
Neurosci4: 424–430, 2001.

LARKUM ME, ZHU JJ, AND SAKMANN B. A new cellular mechanism for
coupling inputs arriving at different cortical layers.Nature398: 338–341,
1999.

LINSENMEIER RA, FRISHMAN LJ, JAKIELA HG, AND ENROTH-CUGELL C. Recep-
tive field properties of X and Y cells in the cat retina derived from contrast
sensitivity measurements.Vision Res22: 1173–1183, 1982.

MARKRAM H AND TSODYKS M. Redistribution of synaptic efficacy between
neocortical pyramidal neurons.Nature382: 807–810, 1996.

MCCORMICK DA. Membrane properties and neurotransmitter actions. In:The
Synaptic Organization of the Brain,edited by Shepard G. Oxford, UK:
Oxford, 1990, p. 32–66.

MCCORMICK DA, CONNORS BW, LIGHTHALL JW, AND PRINCE DA. Compara-
tive electrophysiology of pyramidal and sparsely spiny stellate neurons of
the neocortex.J Neurophysiol54: 782–805, 1985.

NELSON S, TOTH L, SHETH B, AND SUR M. Orientation selectivity of cortical
neurons during intracellular blockade of inhibition.Science265: 774–777,
1994.

NELSON SB. Temporal interactions in the cat visual system. I. Orientation-
selective suppression in the visual cortex.J Neurosci11: 344–356, 1991a.

NELSON SB. Temporal interactions in the cat visual system. III. Pharmacolog-
ical studies of cortical suppression suggest a presynaptic mechanism.J Neu-
rosci 11: 369–380, 1991b.

NICOLL RA. The coupling of neurotransmitter receptors to ion channels in the
brain.Science241: 545–551, 1988.

OHZAWA I, SCLAR G, AND FREEMAN RD. Contrast gain control in the cat’s
visual system.J Neurophysiol54: 651–667, 1985.

PEICHL L AND WASSLE H. Size, scatter and coverage of ganglion cell receptive
field centres in the cat retina.J Physiol (Lond)291: 117–141, 1979.

PRIEBE NJ, KAYSER AS, KRUKOWSKI AE, AND MILLER KD. A model of simple
cell orientation tuning: the role of synaptic depression.Soc Neurosci Abstr
23: 2061, 1997.

REICH DS, VICTOR JD, KNIGHT BW, OZAKI T, AND KAPLAN E. Response
variability and timing precision of neuronal spike trains in vivo.J Neuro-
physiol77: 2836–2841, 1997.

SANCHEZ-VIVES MV, M CCORMICK DA, AND NOWAK LG. Is synaptic depression
prevalent in vivo and does it contribute to contrast adaptation.Soc Neurosci
Abstr 24: 896, 1998.

SAUL AB AND HUMPHREY AL. Spatial and temporal response properties of
lagged and nonlagged cells in cat lateral geniculate nucleus.J Neurophysiol
64: 206–224, 1990.

SAUL AB AND HUMPHREY AL. Evidence of input from lagged cells in the lateral
geniculate nucleus to simple cells in cortical area 17 of the cat.J Neuro-
physiol68: 1190–1208, 1992.

SCLAR G. Expression of “retinal” contrast gain control by neurons of the cat’s
lateral geniculate nucleus.Exp Brain Res66: 589–596, 1987.

SCLAR G AND FREEMAN RD. Orientation selectivity in the cat’s striate cortex is
invariant with stimulus contrast.Exp Brain Res46: 457–461, 1982.

SCLAR G, MAUNSELL JH, AND LENNIE P. Coding of image contrast in central
visual pathways of the macaque monkey.Vision Res30: 1–10, 1990.

SHAPLEY RM AND VICTOR JD. The effect of contrast on the transfer properties
of cat retinal ganglion cells.J Physiol (Lond)285: 275–298, 1978.

SKOTTUN BC, BRADLEY A, SCLAR G, OHZAWA I, AND FREEMAN RD. The effects
of contrast on visual orientation and spatial frequency discrimination: a
comparison of single cells and behavior.J Neurophysiol57: 773–786, 1987.

SKOTTUN BC, DE VALOIS RL, GROSOFDH, MOVSHON JA, ALBRECHT DG, AND

BONDS AB. Classifying simple and complex cells on the basis of response
modulation.Vision Res38: 1079–1086, 1991a.

SKOTTUN BC, GROSOFDH, AND DE VALOIS RL. On the responses of simple and
complex cells to random dot patterns.Vision Res31: 43–46, 1991b.

SOMERS D, NELSON SB, AND SUR M. An emergent model of orientation
selectivity in cat visual cortical simple cells.J Neurosci15: 5448–5465,
1995.

SONG S, VARELA JA, TURRIGIANO G, ABBOTT LF, AND NELSON SB. The
dynamics of synaptic depression at monosynaptic inhibitory inputs to visual
cortical pyramidal neurons. In:Proceedings of the Computational Neuro-
science Meeting, CNS98,edited by Bower JM. New York: Plenum, 1999.

STRATFORD KJ, TARCZY-HORNOCH K, MARTIN KA, BANNISTER NJ, AND JACK

JJ. Excitatory synaptic inputs to spiny stellate cells in cat visual cortex.
Nature382: 258–261, 1996.

TANG AC, BARTELS AM, AND SEJNOWSKITJ. Effects of cholinergic modulation
on responses of neocortical neurons to fluctuating input.Cereb Cortex7:
502–509, 1997.

TARCZY-HORNOCHK. Physiology of Synaptic Inputs to Layer IV of Cat Visual
Cortex (PhD thesis). Oxford, UK: Oxford University, 1996.

TARCZY-HORNOCH K, MARTIN KA, JACK JJ, AND STRATFORD KJ. Synaptic
interactions between smooth and spiny neurons in layer 4 of cat visual
cortex in vitro.J Physiol (Lond)508: 351–363, 1998.

THOMSON AM, DEUCHARS J, AND WEST DC. Single axon excitatory postsyn-
aptic potentials in neocortical interneurons exhibit pronounced paired pulse
facilitation. Neuroscience54: 347–360, 1993.

TROYER TW, KRUKOWSKI A, PRIEBE NJ, AND MILLER KD. Contrast-invariant
orientation tuning in cat visual cortex: feedforward tuning and correlation-
based intracortical connectivity.J Neurosci18: 5908–5927, 1998.

TROYER TW AND MILLER KD. Integrate-and-fire neurons matched to physio-
logical f-I curves yield high input sensitivity and wide dynamic range. In:
Computational Neuroscience: Trends in Research 1997,edited by Bower
JM. New York: Plenum, 1997a, p. 197–201.

TROYER TW AND MILLER KD. Physiological gain leads to high ISI variability
in a simple model of a cortical regular spiking cell.Neural Comput9:
971–983, 1997b.

TSODYKS MV AND MARKRAM H. The neural code between neocortical py-
ramidal neurons depends on neurotransmitter release probability.Proc Natl
Acad Sci USA94: 719–723, 1997.

WASSLE H, BOYCOTT BB, AND ILLING RB. Morphology and mosaic of on- and
off-beta cells in the cat retina and some functional considerations.Proc R
Soc Lond B Biol Sci212: 177–195, 1981.

2149CONTRAST-DEPENDENT NONLINEARITIES IN CAT LAYER 4

Downloaded from journals.physiology.org/journal/jn (096.224.087.234) on July 30, 2020.


