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Kayser, Andrew, Nicholas J. Priebe, and Kenneth D. Miller. These cells are perhaps the best-studied cortical cells and are
Contrast-dependent nonlinearities arise locally in a model of contragie sjte of emergence of the strong selectivity for stimulus

invariant orientation tuningd Neurophysiol85: 2130-2149, 2001. orientation seen throughout visual cortex (Hubel and Wiesel
We study a recently proposed “correlation-based,” push-pull mOdeI§§6Z)

the circuitry of layer 4 of cat visual cortex. This model was previousl| o f the defini h . f simol s is th
shown to explain the contrast-invariance of cortical orientation tuning. ©N€ Of the defining characteristics of simple cells is the

Here we show that it can simultaneously account for several contrdgtgely linear nature of their responses. Their responses to
dependent (c-d) “nonlinearities” in cortical responses. These inclugibitrary stimuli can be reasonably well predicted from a
an advance with increasing contrast in the temporal phase of respowgighted sum of stimulus intensity, where the weighting is
to a sinusoidally modulated stimulus; a change in shape of the tegiven by the cell’s receptive field and negative values of the
poral frequency tuning curve, so that higher temporal frequencies magighted sum are taken to yield zero response (DeAngelis et
give little or no response at low contrast but reasonable responsegjat| 993; Hubel and Wiesel 1962; Jones and Palmer 1987). As
high contrast; and contrast saturation that occurs at lower contrastE Bdicted by a linear response model, the shape of a simple
cortex than in the lateral geniculate nucleus (LGN). In the context I's orientation tuning curve is invariant to changes in stim-

the model circuit, these properties arise from a mixture of nonline . .
cellular and synaptic mechanisms: short-term synaptic depressi s contrast (Sclar and Freeman 1982; Skottun et al. 1987): a

spike-rate adaptation, contrast-induced changes in cellular condge@nge in contrast scales all responses by a constant, rather
tance, and the nonzero spike threshold. The former three mechani$h@ changing the form of the response tuning curve.

are sufficient to explain the experimentally observed increase in c-dHowever, other aspects of simple cell responses show a
phase advance in cortex relative to LGN. The c-d changes in tempdna@nlinear dependence on stimulus contrast (reviewed in Car-
frequency tuning arise as a threshold effect: voltage modulationsandini et al. 1998). In this paper we will examine three such
response to higher-frequency inputs are only slightly above threshgltbperties:1) contrast-dependent phase advance: as the con-
at lower contrast, but become robustly suprathreshold at higher c@fst of a sinusoidal grating stimulus increases, the response of
trast. The other three nonlinear mechanisms also play a crucial roleyinsgrtical cell occurs earlier in the stimulus cycle (Albrecht
this resglt, aII_owing contrast de_pendence o_f temporal fre_quency tuni 595; Dean and Tolhurst 1986) contrast-dependent tempo-

to coexist with contrast-invariance of orientation tuning. Contra frequency tuning: higher temporal frequencies that yield

saturation, and the observation that responses to stimuli of increasi I | ield bl
temporal frequency saturate at increasingly high contrasts, can all or zero responses at low contrast yield reasonable re-

induced both by the model's push-pull inhibition and by synaptiePonses at high contrast (Albrecht 1995; Holub and Morton-
depression. Previous proposals explained these nonlinear respdaeson 1981); andB) contrast saturation: the change in re-
properties by assuming contrast-invariant orientation tuning as a st&ponse amplitude with contrast has a sigmoidal rather than
ing point, and adding normalization by shunting inhibition derivetinear dependence on contrast, saturating at intermediate con-
equally from cells of all preferred orientations. The present proposghsts (e.g., Albrecht 1995). The third property involves the
simultaneously explains both contrast-invariant orientation tuning apgnlinear dependence of scaling on contrast. The first two
these_contrast-d_epenc_ient r)onllnt_aarltles and requires o_nly Procesgiifhlve changes in response more complex than a simple
that is local in orientation, in agreement with mtracelIulau;scaling by contrast: responses either move earlier in time
measurements. . . . .
(property 1) or increase differentially across the tuning curve

(property 2).

In this paper, we address the question of how a single model
circuit, consistent with existing experimental knowledge of cat

The response properties of simple cells in layer 4 of c¥tsual cortex, can simultaneously account for both the linear-
primary visual cortex (V1) serve as a model system for studljke response scaling of contrast-invariant orientation tuning

ing the mechanisms underlying cerebral cortical processir@jd the above three nonlinear response properties. In principle,
accounting for nonlinear response properties in isolation may

INTRODUCTION
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CONTRAST-DEPENDENT NONLINEARITIES IN CAT LAYER 4 2131

not be difficult, given the many inherently nonlinear propertiefsinctions (Jones and Palmer 1987), witiicenter 6rrcenter)

of the synapses, cells, and circuits involved. We suggest thgbuts corresponding to positive (negative) portions of the
the true difficulty lies in simultaneously accounting for botlGabor; and?2) intracortical connections are made between
linear-like and nonlinear response properties: how can tbertical cells based on the correlations between their receptive
underlying nonlinear mechanisms be manifest in some aspefétds (RFs), i.e., between the geniculocortical synaptic weights
of response and yet simultaneously be hidden in other aspegf?, receive. An excitatory cell makes strong connections onto
Indeed, the difficulty of generating any linear-like responses gfher excitatory cells with which it is strongly correlated; an
all is well illustrated by the contrast-invariance of orientatiofhhipitory cell makes strong connections onto excitatory cells
tuning in response to drifting sinusoidal luminance gratingg;ith which it is strongly anticorrelated. The dominant resulting
LGN cells do not provide linear input to simple cells, l:’eC""u“':é:i)nnections follow a “push-pull” scheme and are illustrated in
their response rates cannot decrease below zero. As a re?’—'f&.’ 1. A crucial requirement is that inhibition be dominant: the

LGN mean firing rates increase with contrast. Under a Ilne%_ed-forward inhibitory pathway LGN= | — E must have

response model, an increase in stimulus contrast would . .
crease the amplitude of temporal modulation of firing rati ronger overall gain than the feed-forward excitatory pathway

without affecting mean rates. Furthermore, cortical cells int -GN T E I?where E a_ndll indicate excnztogy al?d |nh|b|tofry q
grate this input through the nonlinearity of a nonzero spigeprt'Ca cells, respectively), as assessed by the mean feed-
threshold. Due to the increase both in modulations and medfgvard inhibition exceeding mean feed-forward excitation

of LGN firing rates, a broader range of stimulus orientatiorf&/€" ﬁ‘ cykc]:le of response to a sinusoidal stir?lulus. Mori Spe-
should produce suprathreshold LGN input at higher contrasg§ically, the mean conductance opened by the two pathways
er a cycle must have a sufficiently subthreshold reversal

Thus the orientation tuning of the LGN input to a simple ceffV
should widen with increasing stimulus contrast.

We have recently demonstrated (Troyer et al. 1998) that t A Preferred Stimulus B Null Stimulus
contrast-invariance of orientation tuning can be accounted 1 a
by the combination ofl) a simple model intracortical circuit
motivated by numerous intracellular studies (e.g., Anderson
al. 2000; Chung and Ferster 1998; Ferster 1986, 1988; Fer:
et al. 1996; Hirsch et al. 1998; Nelson et al. 1994) @hc
“Hubel-Wiesel” (1962) arrangement of lateral geniculate nt
cleus (LGN) inputs to simple cells, in which oriented bands «
oN- or orr-center LGN inputs provide input to then- or
orr-subregions, respectively, of the simple cell's receptiv

field. Here we demonstrate, for the first time, a unified mec b LGN
anistic account of both the linear and nonlinear aspects

simple cell responses. Our previous model incorporated w | GN Excitatory Synapses
number of nonlinear mechanisms, including spike-rate adap = = =3 |ntracortical Excitatory Synapses
tion, contrast-induced changes in cellular conductance, and =D Inhibitory Synapses

nonzero_sp'ke threshold. We n,OW add One additional nonlmeaﬁe. 1. Cartoon of the cortical circuit studied. All neurons receive
mechanism, short-term synaptic depression (Abbott et al. 198¥itatory geniculocortical connections from the lateral geniculate nucleus
Tsodyks and Markram 1997). We show that the resultifgGN) as determined by Gabor functions (illustrated by modulations on a
model explains the three nonlinear properties noted abogeay/uniform background)on inputs at a given retinal location within the

. L ¥ . . H . receptive field (RF) are represented by whitesr inputs by black. All
while retaining contrast-invariant orientation tuning. . illustrated RFs are centered at a common retinotopic position. Neurons with

Importantly, this is the first explanation of these propertiggrs of similar preferred orientation but opposite spatial phase are con-
using a model circuit that is purely local in orientation (Seeected by inhibitory synaptic weights (white, with black outline), while

piscussionfor other models). That is, both the excitatory andeurons with similar preferred orientations and similar spatial phases are

inhihi ; ; ; ; ; onnected by excitatory synaptic weights (black arrows)response to a
the inhibitory intracortical input received by a simple cel ull-field sinusoidal grating of the preferred orientation. When the stimulus

qomes p”manly from cells havmg S'mllar preferred Orlent‘5}?15\ximally overlaps the RFs on the left, the geniculocortical input to those
tion, as suggested by numerous experiments in cat V1 (Andedtis is maximal (large solid black arrows), while the input to the RFs of
son et al. 2000; Chung and Ferster 1998; Ferster 1986, 198§iosite spatial phase (those on thight of A) is minimal (small solid

Ferster et al. 1996; Hirsch et al. 1998). black arrows). Neurons of the well-stimulated phase will fire robustly, and

- : strongly activated inhibitory cells send inhibition only to the weakly
Some of these results have appeared in abstract form (Prlgﬁﬁulated anti-phase excitatory neurons, which do not fire. As a result, as

et al. 1997)- the grating moves across the neurons’ RFs, the excitatory cortical neurons
will produce a strongly time-varying response at the same temporal fre-
MODELING FRAMEWORK quency as that of the inpuB: response to a full-field sinusoidal grating of

the null orientation (orthogonal to the preferred). Because LGN cells

We begin by summarizing the essential information abotgspond to all orientations, the geniculocortical input is still present, but the

our model needed to understand our results. Full details sug‘ﬁlut to each phase is approximately equal. Inhibition is equally strong
ro

: : : m neurons of each phase to their anti-phase excitatory-cell partners.
cient to repllcate our work are iRPPENDIX A. Since inhibition is dominant, none of the excitatory cells fire. The actual

circuit studied included cells of many preferred orientations and spatial
Intracortical circuit phases and, for the spiking model, many retinotopic positions. Connections
. . . . . were based on correlations between RFs. Cartoon illustrates dominant
We study a circuit (Troyer et al. 1998) in whidf) genicu- connections: resulting circuit behavior can be well understood from this
locortical synaptic weights to a cell are described by Gabeimplified version of the circuit (Troyer et al. 1998).
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potential to prevent spiking to a stimulus with orientatiomitatory-to-excitatory (E) cell connections, and a lower bound
orthogonal to a cell’'s preferred orientation. on the membrane voltage. Appropriate values for these eight
This architecture can account for cortical orientation tuningariables were obtained by constraining the output of the
and its contrast invariance (Troyer et al. 1998). How does thigcuit to match a set of experimental findings, including the
circuitry account for orientation tuning? For a stimulus at width and contrast-invariance of orientation tuning (seeen
cell's preferred orientation and spatial phase, other neurams A); this set did not include the nonlinear responses proper-
with similar preferred orientation and spatial phase (both eties studied here. In addition, two parameters describe synaptic
citatory and inhibitory) are strongly activated. However, thdepression, as described below. For each choice of synaptic
inhibition is directed onto cells with similar preferred orientadepression parameters, we typically show average results over
tion but antiphase (opposite spatial phase) RFs. In the casalbfsets of the other parameters that met these criteria, thus
a drifting sinusoidal grating of the preferred orientation, thexamining the robustness of the results across experimentally
resulting inhibition received by a cell comes out-of-phase witlteasonable model parameters that are consistent with contrast-
its excitation, permitting excitatory cells to respond during thiavariant tuning.
temporal phase in which more excitation is received than
inhibition (Fig. 1A). As the ori_entation is shifted away frorr_l th,eSpiking model
preferred, temporal modulation of both feed-forward excitation
and feed-forward inhibition decreases. Since inhibition is dom- To expand on the insights obtained from the rate model in a
inant in the mean, at some orientation the modulation is smaibre biophysically realistic framework, we used the spiking
enough that inhibition is dominant at all times, and the cefthodel of Troyer et al. (1998). One thousand six hundred
cannot fire. In particular, for a stimulus at a cell’'s null orienexcitatory and 400 inhibitory neurons were laid out ira
tation (perpendicular to the preferred), there is essentially nom X %z mm cortical grid, with retinotopic position con-
modulation, inhibitory neurons of both the cell's preferredtrained to move smoothly across the grid, and with orienta-
phase and the opposite phase are continuously activated, tmials determined by an experimentally measured map from cat
thus excitatory cells of both phases are continuously inhibitél. The spatial phase of each RF (which determines the
(Fig. 1B). location of itson and oFr subregions) was chosen randomly.
The contrast-invariance of orientation tuning arises becausennections between cortical cells were then made probabilis-
an increase in contrast equally increases the geniculocortitiedlly based on the correlation between the RFs. All neurons
drive to a given cell and to the anti-phase cells from which were conductance-based integrate-and-fire cells, matched to
receives inhibition. Thus the cutoff orientation (the orientatiotiata from McCormick et al. (1985) as explained in Troyer and
for which input modulation is sufficiently small that inhibitionMiller (1997a,b). Excitatory neurons had spike-rate adaptation
dominates throughout the cycle) remains essentially invariantrrents. We included only fast{famino-3-hydroxy-5-methyl-
across contrast. A more detailed analysis is given in Troyer4isoxazolepropionic acid (AMPA) and GABA-A] synaptic

al. (1998). currents, deferring examination of slow currents [eNgmeth-
yl-p-aspartate (NMDA) and GABA-B] to future work (e.g.,
Rate model Krukowski 2000). Again, parameters were chosen to achieve

appropriately narrow, contrast-invariant orientation tuning, and
We studied two forms of model: a conceptual rate model amenlinear response properties were then studied Areaipix
a more biophysically accurate spiking model. The rate mode)l. Due to the complexity of the model, we present results for
allowed exploration of the cortical circuit and its elementenly a single set of circuit parameters for each set of synaptic
within a simple framework. This allowed us both to work outlepression parameters used.
the basic mechanisms underlying circuit properties, and to
explore a significant portion of the given parameter spacgs, 3| stimuli and LGN inputs
thereby establishing the robustness of these insights. The spik-
ing model, on the other hand, allowed us to establish that theVisual inputs to the models were drifting full-field sinusoidal
insights gained from the rate model translated to a more dgatings. LGN responses were assumed to arise from a spike
tailed, more biophysically realistic setting, and thus providedrate that was the sum of a linear stimulus-induced temporal
verification of the rate model findings. The spiking model alsmodulation and a constant background rate, with rates rectified
allowed us to examine the role of spike-rate adaptation, whiahzero. Amplitudes of the stimulus modulation were matched
was not easily accommodated in the rate model. to LGN data on X-cell responses across contrast and temporal
The rate model consisted of 96 excitatory and 96 inhibitognd spatial frequency (Sclar 1987), as describedbmanpix A.

neurons, with RFs of 12 different orientations and 8 differefithe rate model used this rate directly as the LGN response,
spatial phases, all centered at the same retinotopic point. Caile the spiking model used Poisson spike trains sampled
nections between cortical neurons were made deterministicdligm these rates.
based on the correlation between their RFs, as described abov&he geniculocortical synaptic weights to the simple cells in
Model neuron firing rates were calculated as the weighted sdine model layer 4 were described by Gabor functions, with
of all the input firing rates from geniculocortical, intracorticaparameters matched to experimental measurements of simple
excitatory, and intracortical inhibitory sources, rectified at eell RFs. In the rate model, the geniculocortical (G) weights
threshold; hence the term, “rate model.” The model was deere defined deterministically by the Gabor distribution, with
scribed by eight parameters: the thresholds and membrane timgative Gabor values indicatingrr weights; the spiking
constants of excitatory and inhibitory cells, the gains of genicmodel RFs were established probabilistically by sampling from
locortical (G), intracortical inhibitory-to-excitatory (I), and ex-the Gabor distribution.
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Synaptic depression Contrast-dependent phase advance

Synaptic depression is a use-dependent decrease in synaptigimpje cells respond earlier in time to drifting gratings as the
efficacy (Abbott et al. 1997; Markram and Tsodyks 1996); a%,nirast of those gratings increases, as quantified by the dif-
the firing rate of a presynaptic neuron increases, the Influe%?ence in the phase of the first harmonic (F1) of the cortical

gfei:ir:]gelg Slﬂﬁigi?/ee? fr?msthraetlz:tiegn?srr]wtio tﬂglggséiigizﬂec Ele l;]rg king responses at each contrast (Albrecht 1995; Dean and
' Y, p g thurst 1986). We reviewed the literature to determine the

}‘lannUgt ;ﬁﬂggn;fzigéi\ggg rgg%\\/lsry from depression bewVesize of this contrast-dependent (c-d) phase advance (Fig. 2).

One can characterize synaptic depression by two parametgy . exam?ned both V1 and LGN c-d phase advance, because
f, the ratio of the synaptic efficacy immediately after a presy @MY the difference between these values needs to be accounted

aptic spike to the efficacy before the spike<t0f = 1), andr, for by cortical mechanisms. In all cases we report the advance
the time constant of recovery from depression. Smaller valu@¥éer three octaves of contrast (e.g., the relative advance be-
for f lead to a greater loss of synaptic efficacy after every spikéveen 10 and 80% contrast).
smaller values of cause faster recovery from this depression. For V1 simple cells in the cat, c-d phase advance has been
In both the rate and spiking models, like forms of depressidheasured for approximately 30 cells (Dean and Tolhurst 1986)
are used: the rate-model depression equation is equal to ithene study, and for over 100 cells in another (Albrecht 1995).
average, over Poisson-sampled spike trains, of the spikiddean c-d phase advances were comparable: 42° for a 2-Hz
model depression equation (seeenpix B), and their behavior grating in the former study, 47 and 49° for 2- and 8-Hz
in simulations is qualitatively and quantitatively quite similargratings, respectively, in the latter. In the LGN, X cells show
In the experimental literature, two classes of data appear2®8° mean c-d phase advance in response to 8-Hz (Sclar 1987)
be present: one in which syna_ptic depregsion i_s studied th_roug{‘d 3-Hz (Saul and Humphrey 1990) gratings, while Y cells
the use of paired-pulse stimuli, and one in which depressiongémonstrate as much or more c-d phase advance as cortical
characterized by probing with trains of stimuli (S. Nelsonsimple cells. Both the LGN and cortical measurements are
personal communication). These two types of experiment igharacterized by large standard deviations. Without a knowl-
sult in different measured values fbandr, which we call the edge of the X or Y nature of the geniculocortical inputs to the
“pulse” and “train” parameters, respectively (Table 1). Givegortical cells studied previously, it is difficult to know how
this experimental uncertainty in parameter values, we eXafuch c-d phase advance the cortex must add, or even whether

ined all results under both choices of parameters. it adds any at all. An additional uncertainty is raised by the fact
_ _ . _ _ that we are modeling layer 4, where the first transformation of
Contrast-invariance of orientation tuning LGN inputs occurs. Further cortical transformations could add

Spore c-d phase advance, so layer 4 might show less c-d phase
vance than the cortical mean; however, the data on cortical
& Is were not broken down by layers.
We make perhaps the simplest assumption: cortical layer 4
ould account for the mean difference in c-d phase advance
ween X cells and V1 simple cells. This is based in part on
§ervations suggesting that X cells are the physiologically
ominant input in V1 (Ferster 1990a,b; Ferster and Jagadeesh
1991). Thus we assume that layer 4 must account for roughly
20° of c-d phase advance over 3 octaves of contrast. Note that
we do not include LGN c-d phase advance in our simulations,
Having summarized the model circuit, we now summariz the simulations should be compared only to this difference
the experimental data on response nonlinearities that we viiétween experimentally observed LGN and V1 c-d phase ad-
address with this model. vance.

As we have mentioned, one of the criteria for selection
our model parameters was that the resulting circuit should h
contrast-invariant orientation tuning. More generally, we ha
found that the principles outlined in Troyer et al. (1998) suffic
to robustly produce contrast-invariant tuning across tempo
frequencies and in the presence of synaptic depression,
issues not addressed in the previous work, although we do ﬁ
discuss this point further here.

EXPERIMENTAL FINDINGS ADDRESSED

TABLE 1. Depression parameters

Paired-Pulse Data Train Data
Location f T, MS Layer(s) f T, MS Layer(s)
G 0.563 9 LGN — IV 0.465" 371 LGN — Il
E 0.87% 57° IV =1V 0.8° 47F i —nii
| 0.8° 179 vV =1V 0.95° 1017 i — i

Parameters were derived by least-squares fits to data in the figures indicated, except that parameters from the random stimulus train expengnents of So
al. (1999) were taken directly as reported. Geniculocortical data divided readily into pulse (Stratford et al. 1996) and train (Gil et al. 198&y gatanThe
corresponding intracortical data were then chosen, in the case of the pulse data, from work from the same laboratory (Tarczy-Hornoch 1996ndehnczy-Ho
et al. 1998); and in the case of the train data, from other work in the rodent that recorded both E and | depression curves (Song et al. 1999). Noi@ngiso that
of the f andr values in this table do not describe connections within layer 1V, the cortical layer we model in this paper. Where possible, when compiling thi
table we selected values determirBdn layer IV 2) within primary visual cortex3) in the cat. LGN, lateral geniculate nucledsStratford et al. (1996, Fig.
1g); cat primary visual cortex? Tarczy-Hornoch (1996, Fig. 4.5); cat primary visual cortéXarczy-Hornoch et al. (1998, Fig. 4; 0.2-Hz curve); cat primary
visual cortex® Gil et al. (1997, Fig. 3); mouse and rat somatosensory cofteang et al. (1999); rat primary visual cortex. Note thatthvalue from the figure
legend in Gil et al. (1997) refers to their exponential fiot to the time constant of a fit to a synaptic depression description.
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—| Dean & Tolhurst 1986 (2 Hz) I

CTX Albrecht 1995 (2 Hz) ‘

== | Albrecht 1995 (8 Hz) ‘

— | Sclar 1987, Y (8 Hz) }—-

Sclar 1987, X I

LGN Saul & Humphrey 1990, Y (~3 Hz) }—l
= | Saul & Humphrey 1990, X )—1
— | Shapley & Victor 1978, Y (8 Hz) }—n
RGC
— | Shapley & Victor 1978, X }—1

0 10 20 30 40 50 60 70 80
Contrast dependent phase advance (degrees)

Fic. 2. Experimentally determined values for contrast-dependent (c-d) phase advance in 3 parts of the visual pathway: retinal
ganglion cells (RGChottom,in dark gray), lateral geniculate nucleus (LGNiddle,in gray), and striate cortex (CTXop, in light
gray). All studies are in cats. c-d phase advance is quantified here as the relative phase difference between responses to stimuli
differing by 3 octaves of contrast. The contrasts below are Michelson contrists H( |in)/(2 * | hean]- Data represented are
mean c-d phase advance (and SD where provided) across cells studied, and are asljobear:and Tolhurst (1986): responses
to 5 and 25% contrast drifting gratings for 29 V1 simple cells. We linearly extrapolated, from 2.3 octaves of contrast to 3, the
reported mean and SD of c-d phase advag@ydlbrecht (1995) (taken frommiscussionof that paper): 2 Hz: responses to 5 and
25% contrast drifting gratings, results linearly extrapolated from 2.3 to 3 octaves. 8 Hz: responses to drifting gratings at 10 and 80%
contrast (note, c-d phase advance at 8 Hz between 3.5 and 28.3% contrast, also 3 octaves, was 33% larger). All data for V1 simple
cells; SDs and number of cells were not repor@dsclar (1987): mean and SD responses to 10 and 80% contrast drifting gratings
for 27 X and 51 Y cells4) Saul and Humphrey (1990): responses to drifting gratings of optimal temporal frequencies for 19
nonlagged X and 8 nonlagged Y cells over a range of contrasts (0.0025-96%). Their linear fits to phases of suprathreshold responses
provided slopes with accompanying SDs (both in cycles of phase per octave of contrast), which we multiplied by 3 (converted to
degrees) to obtain changes over 3 octaggShapley and Victor (1978): 3.5 and 28.3% contrast (2.5 and 20% RMS contrast) for
8 X and 18 Y cells. Responses to counterphase gratings including 6—8 different temporal frequencies with total contrast as
indicated; phase advance of 8-Hz component was determined. In those papers in which phase advance was determined for both X
and Y cells, the same temporal frequency was used for each data set; in the figure, this frequency is indicated in the “Y-cell” bar
only. We were guided through this data by the lucid discussion of Albrecht (1995).

Contrast-dependent changes in temporal frequency tuning cation; Hawken et al. 1992; of 3 published tuning curves, effect
) ) ) _is seen in Carandini et al. (1997), Fig. 6 but not Fig. 9 and not

In response to an increase in stimulus contrast, cortiGg@den in Albrecht (1995), Fig. 11], suggesting that a relative
temporal-frequency tuning curves change their shape. Highgjosting with contrast of the high temporal-frequency portion
temporal-frequency stimuli that yield small or zero responsgs the temporal tuning curve may be a common V1 property.
at low contrast yield reasonable responses at higher contragflwever, there are no data as to whether, or how strongly, this
One measure of this is given by comparing the ratios, at eadfact is seen in layer 4 neurons. Moreover, LGN Y cells show
temporal frethuency, of the responsi at fh|gh contrast t ¢, e pronounced c-d boosting of the high-frequency portion
[E?gp%nigp'a:egl\gttce?jngrrgs:.slgladra(tlagg)]erlhirso:?ati?)r}sl_r(élgti)\fe(l:y Ifthe tuning curve (Sclar 1987) than do X cells. Just as for c-d
constant across temporal frequencies, although slightly lar %?Jstet:ds\;ﬁgi(;ed’ stil;[rr:poltét lc(gﬁ;’\'lidgeu%fctlzzrrehl23\/"%:;;”%;2&2'I

at higher frequencies. This behavior was fairly typical of 27 . i . .
cells studied in Sclar (1987). In two cortical simple cell®0St if any, is accomplished by the cortex. We again make

reported in Albrecht (1995), however (one replotted in Fig. é'?e assumption that the cortex must account for the difference
bottor), this ratio increases sharply with increasing tempord] "€Sponse between X cells and V1 simple cells. Last, these
frequency: higher temporal frequencies give very small réata also suggest, as does one published cell in monkeys
sponses at low contrast, but reasonable responses at higké@randini et al. 1997, Fig. 6), that increases in contrast might
contrast. The cortical data for cats is very sparse: we are awal€o shift the peak of the temporal frequency response curve to
of only the two cells from Albrecht (1995) and one additiondtigher frequencies.

cell in Holub and Morton-Gibson (1981) for which temporal It is important to note that the relative boosting of high-
frequency tuning at multiple contrasts is reported; all thrdeequency responses by contrast does not correspond to an
cells show this effect. The effect is also common, although nioicrease in contrast gain (the slope of response versus contrast)
universal, in monkey V1 cells [M. Hawken, private communiat higher temporal frequencies. Plotting the responses at each
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LGN X Cell Saturation of responses with increasing contrast
& Simple-cell responses tend to reach a plateau with increasing
Sclar. 1987 Normed stimulus contrast (Fig. 4potton); this is known as contrast
gl S saturation. This cannot be explained by intrinsic saturation of
oo the cell's ability to fire. As evidenced, for example, by the
3”’ 30 A Sperreeeennr contrast-invariance of orientation tuning, saturation does not
S5l @40 ¢ M occur at a fixed response level, but rather at different responses
= e levels for different stimuli (so that orientation tuning curves are
e similar in shape at saturating contrasts and at low contrasts).
g sob LGN inputs show contrast saturation as well (Fig.ta@p). If
) LGN input firing does not change with increasing contrast,
% neither will cortical firing. Thus the question arises of whether
& o5) cortical saturation level is independent of LGN saturation
level.
While the LGN X cell in Fig. 4 indeed saturates at higher
0 : . . : ! . : contrasts than the cortical cells in that figure, it is not clear
0.5 I 2 4 8 16 32 whether this is a general phenomenon. Contrast saturation can
be measured by a parametegGhe contrast at which response
V1 Cell is half of the maximal, saturating response (determined from a
i fit of the Naka-Rushton equatioRg. Alin APPENDIX A, tO the
Normed contrast-response curve). In Table 2, we show the valuggf C
Albrecht, 1995 for the cell of Fig. 4 and for 1 additional cortical and 5
/__\' oor additional LGN X cells for which we found contrast response
éﬂ m60 O 5{+vreend e curves in the literature, along with the mean value reported for
o @30 Vv over 100 cat cortical simple cells in Albrecht (1995). From
wn 75 3 . . .
— these values, it is not obvious whether cortical cells saturate
I A S5 earlier than LGN cells. The same uncertainty applies in mon-
2 ol key, where V1 cells saturate over a range of contrasts similar
g to the combined saturation ranges of magnocellular and par-
B vocellular LGN cells (Allison et al. 2000; Sclar et al. 1990).
LP]
ek 100 [ | GN X Cell 0.5 Hz
80+ ;
s 1 2 4 8 16 3 i
Temporal Frequency (Hz) 40t
Fic. 3. Contrast enhances responses to higher temporal fr(_equencies more in 20
V1 than LGN. Experimentally determined F1 responses at different temporal &
frequencies and contrasts for an LGN X cell and a V1 cell. Lighter grays to 2 0 : . :
darker grays, with corresponding symbols: increasing contrast, with values = 0 20 40 60 80 100
noted in Iegernd _for each figure. To show the relativg increase |n high-frequency E‘
responses with increasing contrast, we plot normalized data iimskeés each < EETE——— P
response is divided by the response at the co_rrespondmg frequency and 10%__ 100 - V1 Cell
contrast (so that all 10% responses are normalized to 1). The 5% V1 cell curves 1 Hz
are omitted from the normalized data; we normalize by 10% to better compare 80 - 3 Hz
to our r_no_del curves in_Fig. 10_(f0r which the I(_)W contrast is ;LO%). Dashed _ AAG6 Lz
lines within theinsetindicate ratios of 1tfottom ling and 5 (op line). LGN 60
X cell temporal frequency response; raw data replotted from Sclar (1987). V1 010 Hz
cell temporal frequency response; raw data replotted from Albrecht (1995). 407 ¥ 15 Hz
) Albrecht
temporal frequency versus contrast (Fig. 4) makes clear that 1995

this slope is not enhanced at higher frequencies and, if any- 0 '
. . . . 0 20 40 60 80 100

thing, is reduced. Another of the three cells in the literature Contrast (%)

(Holub and Morton-Gibson 1981) showed similar contrast gain

at high and low temporal frequencies, but an elevated threshol@é: 4. Experimental dataHfO'rdthe tempgral frequency depg‘?fdence of CO”-I
: _ t saturation. Experimentally determined F1 responses at different tempora

contrast for _hlgher te_r_npo_ral fre_quency responses. Thus # uencies and contrasts for an LGN X cell and a V1 cell. Figures are

g_reater relative ampllflcat_lon W_|th contrast of responses {gpiotted from the data shown in Fig. 3, and fitted to Naka-Rushton curves (see

higher temporal frequencies arises because low-contrast Amenpix A). Lighter grays to darker grays: increasing temporal frequency.

sponses at higher frequencies are very small, due to low&N X cell contrast saturation response; raw data replotted from Sclar (1987).

; cell contrast saturation response; raw data replotted from Albrecht (1995).
contrast gain and/or to elevated contrast threshold, and q\\{é{e that (for the most part, see text and Table 2) the responses of V1 cells

because high-contrast responses show an elevated cony@state at lower contrasts than do the LGN responses, and that cortical
gain. responses to higher temporal frequency inputs saturate at higher contrasts.
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TABLE 2. Experimental G, values

Temporal Frequency, Hz

Cell 1 2/2.5 3/3.3 4/5 6/6.7 8/10 12/12.5 15/16/16.7
LGN (1) >100 >100 >100 35 23.0 21.9 21.8
LGN (2) 12.7
LGN (3) 14.9
LGN (4) 6.7
LGN (5) 8.2
LGN (6) 5.7
V1(1) >100 30.0 16.7 21.6 18.5 28.9 39.1
V1(2) 7.7 7.4 13.1 16.2 22.7
V1 mean 15.5

Cso values from Naka-Rushton curvesq. Al fit to experimental data. LGN (1), V1(1), V1(2): cells of Fig. 4;-C, respectively. LGN (2—4): cells from
Cheng et al. (1995); LGN (5): cell from Chino et al. (1994). LGN (6): cell from Kaplan et al. (1987). V1 mean: mean from over 100 cat simple cells, each a
or near its optimal temporal frequency, reported in Albrecht (1995). LGN (1): temporal frequencies (TFs) 1, 2, 4, 8, 16 Hz. LGN (2-5): TF 3.1 Hz. LGN (6)
TF 4 Hz. V1(1): TFs 2.5, 3.3, 5, 6.7, 10, 12.5, 16.7 Hz. V1(2): TFs 1, 3, 6, 10, 15 Hz. For individual cells, we performed least-squares fits of Naka-Rushtc
curves to published contrast-response data. Best-fit value greater than 100 indicates that the response did not show saturation over the tnasésured con

However, the phenomenon of contrast adaptation (Albrednated in Fig. 5, this shifts the response peak forward in time.
et al. 1984; Ohzawa et al. 1985) strongly suggests a corti@dcause the effect of synaptic depression grows with presyn-
role in setting contrast saturation levels. Sustained preserdgtic firing rate, and thus with contrast, this shift increases with
tions of low (high) contrast stimuli shift the cortical responsetimulus contrast, yielding a c-d phase advance. Spike-rate
functions to lower (higher) £s, without corresponding shifts adaptation is evoked by postsynaptic rather than presynaptic
in the LGN response functions. Both threshold and saturatiggiking response, but otherwise it causes c-d phase advance for
contrasts are shifted by adaptation. This indicates that iy same reasons as synaptic depression. Finally, as empha-
cortex can set its saturation level independently of the level @baq in studies of the normalization model (e.g., Carandini et
which LGN responses saturate, and motivates us to explore fie 1 ggg- seepiscussion), increases in postsynaptic conduc-
effects of our model circuit mechanisms on cortical contr nce ce{use a decrease in membrane time constant, and this

saturation. The strongest components of adaptgnon_ OPEIgiE ease in integration time causes the phase of responses to
over time scales longer than that of any mechanism incorpos

rated in our network (mean time & of the total effect is advance. If conductance grows with stimulus contrast, this also
5.5-6.5 s, Ohzawa et al. 1985), so we cannot address th)é'%(/js a c-d phqse advance. . .

effects. However, contrast adaptation or related phenomena ar € flrs;_t examined the role of synaptic erressmn. We began
seen on multiple time scales, including short time scai?é’ s'tudylng the ‘?ffeCtS of the de.pTeSS'O” paramete(the .
(Bonds 1991; Geisler and Albrecht 1992; Nelson 1991a,b) tHEgCtion of synaptic strength remaining after each presynaptic
are within the range of mechanisms studied here (spike-rﬁfé'on potential) and (the time constant of depression; Fig. 6).
adaptation, synaptic depression, recruitment of dominant df?f?met“c variations dfand T were carried out only for the
ponent inhibition). Here we address the contributions of the Emculocortmal synapses: we examined the c-d phase advance

mechanisms to contrast saturation, while noting that othgrthe total geniculocortical input to simple cells in response to
mechanisms might be involved in both saturation and adapfRtimally oriented spatial gratings drifting at three temporal
tion over longer time scales, requencies. Depression at geniculocortical synapses yields c-d

The data on contrast saturation also suggest an additio&??se advances of 5-10° across a broad range of parameters.

point that we will address: simple cell responses saturate '4f SNOW only rate model results in Fig. 6, as spiking model
higher contrasts as temporal frequency increases. This effégults are virtually identical.
was noted by Albrecht (1995) in discussing the two cells for | "€ dependence of c-d phase advancef and  can be

which temporal frequency tuning was studied at multiple coifnderstood as follows. A smalléy representing stronger de-

ression, induces stronger c-d phase advance, up to a point.

trasts, and is shown particularly prominently by the cortic . S
cell of Fig. 4. Similar findings have been noted in monke ncef becomes small enough that the synaptic efficacies are

(Carandini et al. 1997). close to zero within the stimulus cycle at some contrast, further
increases in contrast have less and less additional effect, so too
great a reduction ifican decrease the c-d phase advance (Fig.

RESULTS 6A). Smaller 7 yields greater recovery from depression be-

Contrast-dependent phase advance tween spik_es, hence less depression and less c-d phase ad-
vance. Asrincreases, the depression becomes stronger and the

At least three mechanisms can contribute to cortical cghase advance increases, uatibecomes comparable to the
phase advance beyond that of the LGN inputs: synaptic deeriod of the stimulus cycle. At this point; is preventing
pression, spike-rate adaptation, and contrast-dependent racovery of synaptic efficacy between response cycles. Further
creases in conductance. Synaptic depression is evoked byitteeeases inr have little effect on c-d phase advance: such
presynaptic spiking response to the grating stimulus, and difereases change the dynamic range over a cycle, lowering the
ferentially suppresses the later portions of the input, and thusméan synaptic efficacy and mean response, but do not seem to
the postsynaptic response, over each stimulus cycle. As illappreciably alter the time course of depression and recovery
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>

Low contrast the geniculocortical synapses (G), in the intracortical excita-
SO— m 7 1 tory synapses (E), and in the intracortical inhibitory synapses
40r |\ g A i ' “. 08 (). This yields eight possible configurations for the locations
0.6 § --- Input of depressing synapses. Depression in the | synapses had little
04% — Output effect on phase advance, SO We_illustrate_ the ctd phase advance
02™ —— Efficacy produced by the four configurations not involving | as well as
for the case of depression at all locations (Fig. 7). Matching
1 12 14 16 18 these data across the different depression conditions is not
B High contrast trivial; one must ensure that the data are comparable by match-
- - 1 ing firing rates, for example, or by using the same set of
0.8 parameters in all cases. We chose to show the distribution of
v 1068 --- Input results for all model parameter sets that satisfied the known
Do LR Lo I 0.48&:) — Output experimental constraints (seerenpix A) at a given temporal
. frequency. Similar plots in which we include only model
-\ N parameter sets that fit the constraintathittemporal frequen-
1 12 14 16 18 cies give similar results with less variability, but there are no
such parameter sets within our search range for some cases
(both sets of “G” cases, and the train “E” case).
As evidenced by Fig. 7, depression of either geniculocortical
— High Cont. or intracortical excitatory synapses can induce approximately
5° of c-d phase advance, and these advances sum when de-
pression is present in both locations. In the absence of any
depression, there is no c-d phase advance, as expected. These
i T R - general results are for the most part simila( across te_mporal
Time (seconds) frequency of the input and choice of synaptic depression pa-
rameters (pulse vs. train), except that the train parameter set

Fic. 5. Geniculocortical synaptic depression induces both an absolute %@%ds to produce somewhat Iarger phase shifts than the pulse
a relative phase advancA.andB: steady-state responses to a drifting sinu-

soidal grating at a cortical cell's preferred orientation and spatial frequendBl: @S IS @lso evident in Fig. 6. _ _
Dashed lines show firing rate, noted on the ordinate, of a single bGhell To consider the additional effects of spike-rate adaptation
input to the cell; thin lines, instantaneous efficacy of the synapse from trand of contrast-dependent changes in membrane time constant,

LGN input to the cortical cell, normalized by the weight's maximum valueyse turn to the spiking model. In this model depression was
thick lines, conductance contributed by that LGN input to the cortical cell, '

scaled by an arbitrary factor for display purposes (but maintaining the reIatiUlzCI.Uded. onIy at genlCU|ocortlcal synapses, for. reafops de-
difference between low and high contrast conductances across figures). $r&I0€d inAPPENDIX A. In the absence of depression (*D”) or
efficacy decreases as input rate increases, and recovers after input rate dec@@aptation (“A”), a c-d phase shift of 3—4° appears, increasing
Consequently, the peak of the conductance curve, the product of the efficagightly with temporal frequency (Fig. 8, “No A, No D”). This

times the rate, shifts forward in time relative to the input. This shift in the pe. ; ; i _
correlates well with the absolute phase advance. The cell’s output, which in?ﬁerou@]hly consistent with the observed contrast-induced de

absence of intracortical connections is just the LGN conductance temporeﬁ'l aseﬁ In memPrane t'm_e ConSt]é?Mdmg e|th¢r adaptation
filtered by the cell’'s time constant (and rectified), will show a phase advangéone (“A, no D”) or geniculocortical depression alone adds

similar to that of this single conductande.responses to a low contrast (10%)roughly another 5°, and the effects of these two mechanisms
stimulus.B: responses to a high contrast (80%) stimuliscomparison of the {ggether are additive.

conductances (now shown unscaled, and measured in Hz) induced by thi§, : L
particular connection at low and high contrast. The steeper and stronger ith all three mechanisms present, the Splklng model shows

synaptic depression at higher contrast leads to an earlier peak of cortidd@an c-d phase advance of 13-15°, relative to LGN, for either
response in each cycle and thus to a greater phase advance. Depres@&inof depression parameters (Fig. 8). Depression in intracor-
parameterst = 0.465,7 = 371 (‘train” parameters). tical excitatory synapses can easily add another 5° (Fig. 7).
o ) This suggests that these mechanisms may be sufficient to
within that dynamic range (of course, as— <, the steady- account for the roughly 20° difference between LGN X cell
state response level will go to zero, and c-d phase advance Wild V1 c-d phase advances that have been observed in cats
become undefined). Finally, an increase in temporal frequengig. 2). However, while we have found that the effects of
is roughly equivalent to moving the graphs down and to thseniculocortical depression add with those of intracortical E
left: at higher temporal frequency, there is less time in eaclepression (Fig. 7) and with those of adaptation (Fig. 8), we
cycle for depression to occur, so a lar§és needed to get an
equivalent amount of depression, and there is less time in eachrhe time constant varies across a stimulus cycle, but a simple analysis
cycle to recover from depression, so a smalegives an can be obtained by regardingas fixed for a given contrast. Then the formula

equivalent amount of recovery. for contrast-dependent phase advance, in units of time, is [arctem)2—

. - . arctan (2fry)]/2+f, wherer, andt, are the low-contrast and high-contrast time
Next, for fixedf and (Set either accordlng to the pU|Se Orconstants, respectively, arids temporal frequency. Including the effects of

train parameters, Table 1), we examined the relative contritdgmulus-independent background firingin the spiking model is approxi-
tions of synaptic depression at different synaptic loci in the fullately 15 ms in the absence of a stimulus, 12.5 (BC).5 (F1) ms for F1=
model circuit, using the rate model. This model has no spik@? flat LGN inputs, and 8 (DCy- 2.5 (F1) ms for F1= 90 flat LGN inputs.
rate adaptation and has a fixed membrane time constant,VA\gg"’mge ofrfrom 12.5t0 8 ms or from 14 to 10.5 ms [mean or (meaf1)]

- . d predict advances of 2.5 or 3° at 2 Hz and 7 or 10° at 8 Hz. The prediction
only depression should contribute to the c-d phase advang&yorse at higher temporal frequencies, but the assumptions may also be more

Synaptic depression can be found in any of three locations:piblematic since conductance changes more rapidly at higher frequencies.
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B C

Rate, 2Hz Rate, 8Hz

f of Depression

100 200 300 400 100 200 300 400 100 200 300 400

T of Depression T of Depression T of Depression

FIG. 6. The dependence of contrast-dependent geniculocortical phase advéramedarin the rate model, shown for drifting
gratings of f) 2-Hz, B) 4-Hz, and C) 8-Hz temporal frequency. Black indicates less phase advance; white indicates more phase
advance. The experimental values of the geniculocortiaat r parameters for the pulse and train data sets (Table 1) are marked
by the words “Pulse” and “Train.” Gratings were of optimal orientation and spatial frequency; mean c-d phase advance across
simple cells of multiple spatial phases is shown. In this figure, response is simply the summed geniculocortical input to simple cells,
ignoring cortical integration; thus results are independent of choices of cortical model parameters. c-d phase advance is measured
for the sum over a cell's geniculocortical inputs of synaptic efficacy times firing rate. Results are extremely similar for
geniculocortical input currents in the spiking model (not shown), with small differences due to the Poisson sampling of firing rates
in the latter model; depression in the rate model should correspond to average over Poisson sanysiesN(sees).

have not studied the three together. We tried modeling addion to the experimental tuning of Fig. &p, which we refer to
tation in the rate model, but did not see an effect on c-d phase“Sclar” tuning [because the experimental data are from Sclar
advance. In our simple rate model, adaptation was proportiogdg7)]. Using flat LGN tuning, we can examine cortical
to the rate, and therefore was active even at low rates. In realipntributions to temporal tuning; we can then examine full
and in our spiking model, the net effect of adaptation increasgsrtical responses using Sclar LGN tuning.
faster than ”nearly with flrlng rate: the mean adaptation CUrrentAssuming flat LGN tuning, there are at least four cortical
increases proportionally to the rate, but the effect of thigctors that contribute to temporal frequency tuning and its
current on spiking increases with rate, because at higher ralggrast dependencet) the cellular time constant and its
(smaller interspike intervals), there is less time for the spik§acrease with increasing stimulus contrathe spike-thresh-
induced current to decay between spikes. This difference d nonlinearity:3) spike-rate adaptation; an) synaptic de-
pears to be critical to the c-d phase advance induced Dy.qqion. We consider the effects of each of these in turn.
adaptation. Rather than include a more complicated (and un'gellular (and synaptic) time constants act as low-pass filters,
derconstrained) dependence of adaptation on rate, we ele¢lgdsing the modulation of the simple cell's voltage response
to study only the effects of synaptic depression in the raffe 15t harmonic of F1 of the voltage response) to decrease
model, and to study adaptation only in the spiking mod&lith increasing temporal frequenyAs we have already
Conversely, as discussedArpENDIX A, for reasons of COMPU- oeq the average membrane time constant of a cortical cell
tational complexity, we did not study depression of intracortisrinks as the amount of synaptic input to the cell increases,
cal synapses in the spiking model. _ _ l{llaecause increasing synaptic drive increases membrane conduc-

We also examined the dependence of phase shift on stimullisee “As a result, at higher contrasts the voltage responses to
orientation in the rate model (data not shown). c-d phageher temporal frequencies are less attenuated by cellular
agjvance remains essentially constant across orientations ing than at lower contrasts (Carandini and Heeger 1994).
give reasonable response. This effect is captured in the spiking model, but not in the rate

) ~model which has a fixed time constant. The effect is modest:

Contrast-dependent changes in temporal frequency tuning the mean time constant in the spiking model shrinks from 12.5

We next studied the contrast dependence of temporal ff8-8 ms between the low (F% 30) and high (F1= 90) flat
guency tuning. As in our studies of c-d phase advance, WUt levels (further details in footnote 1). Assuming a linear
wanted to isolate the cortical contribution to temporal frenodel of voltage response, this yields about an 18% increase in
guency tuning; in this case, to understand the cortical respoi@ high-contrast voltage F1 at 12 Hz relative to that expected
in the absence of any incoming temporal information beyortP™m the low-contrast time constant. o
the stimulus-driven temporal modulation of the input rates. However, this modest effect can become significant when
Experimentally, the LGN inputs show temporal-frequency d&ombined with the nonlinearity of a nonzero spiking threshold:
pendence in the amplitude of their rate modulations (response
F1; Fig. 3,top). Thus we found it convenient to consider an *A linear model of a cell with time constant produces modulated first

even simpler model of LGN responses in which the LGRarmonic responses to temporal frequentig®portional to 1%/'1 + (277, 2,
' - = 1/7; diminishes the maximum response by 84%. Membrane time constants
response F1 was constant across temporal frequenCIeS %fr8é—16 ms, as used in the rate model, would produce corresponding attenu-

given contrast, with larger F1s representing higher contragfons of 14-35% at 12 Hz, and 22-46% at 16 Hz, relative to responses at 2
We refer to such an LGN response profile as “flat,” in disting4z. The time constant in the spiking model covers a similar range (footnote 1).
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by viewing the corresponding intracellular voltage traces for a

AM . Plulse Palrametelrs : randomly chosen cell with spiking turned off (FigBP the
O 2Hz spike threshold of-52.5 mV is indicated as a dashed line. The
2 g modest attenuation of voltage modulation due to membrane
B 4Hz

g filtering is, on average, sufficient to keep voltage responses
subthreshold at the lower input levels. Higher input modulation
levels, however, yield higher voltage modulations that consis-
6 Fu 8 tently cross threshold. This threshold effect depends on our
PP circuit model, in which inhibition is dominant so that the mean
response to a sinusoidal grating is always subthreshold and

10 - . 8 Hz 11990 402

8 2l b 4

Phase Advance (degrees)

2r l ? 1 spiking occurs only on voltage modulations (Troyer et al.
ol lﬁ § 1998); in a model in which the mean input to a preferred
- T i stimulus was suprathreshold, the modest affects of cellular
) S filtering on the voltage modulations would have only modest
-4 1 effects on spike response.
6 . . . : . To examine the effects of the other mechanisms, we exam-
none E G G+E  GHIHE ined temporal frequency tuning curves with and without syn-
Location of Depressing Synapses aptic depression (Fig. 1@&, no depressiorB, pulse depression
parameters) and, for the spiking model, with and without
B Train Parameters
14 : . : : . Pulse Parameters
- 25 - . : ;
| [:[ 2 Hz 187225 194377 | o
— Tom e Ths e g [ 2hz
§I{]_ - SHZ 13 & 320‘ .4[—]2 4
%D 8- 61 b1 B =
= 85 7 w 15 . 8 Hz =
) I
2 4t 1 S 10| T '
= = 1o ‘
o2t § . < =
< e 2 5l _
o 0F . - 8 o 3
S| Al
f 2r R 1 0
4 _ no A, noD A, noD D, no A Aand D
. . . . . Operative Mechanism(s)
0 none E G G+E  GHI+E
Location of Depressing Synapses Train Parameters

25
Fic. 7. Dependence of c-d phase advance on the location of depressing—~

[ 212

synapses. Graphs show c-d phase advan@&D for those rate model param- @

eter sets that produce constraint-satisfying outputsAseenpix A) at a given Ep20 [

temporal frequency. The number of parameter sets contributing to each dati © . 4 Hz

point is noted above each error bar. c-d phase advance is shown for gratingE . S H

inputs with temporal frequencies of 2, 4, and 8 Hz, represented by the light © 15 4 =2

gray, gray, and dark gray bars, respectively. The location of the depressin¢c =
synapses, if any, in each of the cases is indicated by the letter(s) on the abscis:
(G = geniculocortical, I~ inhibitory, E = excitatory intracortical). The 3 bars
above “G+ | + E,” for example, indicate the c-d phase advanc&D for 2-,

4-, and 8-Hz grating inputs when the rate model includes depression in all 3 of Lo J
the G, I, and E synapse#\: c-d phase advance for “pulse” depression

parametersB: c-d phase advance for “train” depression parameters. Note that @~

the rate model is completely deterministic; the SDs arise from the averaging of 0
all constraint-satisfying parameter sets for the given temporal frequency and no A,noD Ao D D, no A Aand D

location(s) of depressing synapses. When we restricted ourselves to paramet: Operative Mechanism(s)

sets that satisfied constraints across all 3 temporal frequencies, results were . ) .

very similar where such parameters were found (except that SDs were much- 8-~ c-d phase advance of spiking model in the presence of different
smaller); but no such sets were found for some locations of depressif§Poral nonlinearities for different temporal frequencies of input. Light gray:
synapses (see text). input gratings at a temporal frequency of 2 Hz; gray: input gratings at 4 Hz;
dark gray: input gratings at 8 Hz. Four different types of simulations were run:

. . . » . from left to right, simulations with neither spike-rate adaptation nor synaptic
the thresho_ld gives r';e toan Iceberg effect. Flgmov_\ls depression (“no A, no D”), simulations with only spike-rate adaptation (“A, no
responses in the spiking model to four levels of flat LGN inputy”), simulations with only synaptic depression (“D, no A”), and simulations
when adaptation but not depression is present. At 12-Hz inpmn both mechanisms present (“A and D”). We calculated a c-d phase advance

; ; f the peristimulus time histograms for each of the 29 cells examined, then
frEquenCy’ the response Is close to zero for input Fls of 15.c[c5>"nnw]puted the mean and SD across cells for each condition. Both spike-rate

30 spikes per se_cond, but thereafter grows with incre.as'%ptation and geniculocortical synaptic depression induce a c-d phase ad-
input F1, suggesting a threshold effect. This can be confirmeithce, and the advance increases when both are present simultaneously.

=

>

hase Advanc
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depression or adaptation, the filtering by the cortical cell’'s
v T S - membrane time constant, combined with the spike threshold,
produces strongly low-pass cortical responses (Fig\, 10id-
dle panel}. Both spike-rate adaptation (Fig. Iihttom panels
and synaptic depression (Fig.B)0suppress responses to low-
er-frequency stimuli much more strongly than responses to
higher-frequency stimuli, and can convert low-pass cortical
response into a more band-pass response. This property of
synaptic depression also virtually eliminates the difference
between flat and Sclar inputs (Fig. B0top panels Train
parameters for synaptic depression produce results similar to
pulse parameters, except that there is less difference between
, o @ | W 90 responses to low versus high contrasts (not shown).
2 4 8 16 B 50 Both synaptic depression and spike-rate adaptation contrib-
3 ute to the relative enhancement of higher temporal-frequency
Frequency (Hz) O] responses at high contrast. Each is more strongly activated by
Ul higher-contrast than by lower-contrast stimuli, and each more
strongly suppresses responses to lower-frequency than to high-
er-frequency stimuli. These contrast-dependent effects are
(spks/s) most clear in the “normedinsetsin each panel of Fig. 10,
which show the ratio of high-contrast to low-contrast responses
versus temporal frequency. This ratio strongly increases at
higher temporal frequencies for cortical responses in every
case except for that of the rate model without depression (Fig.
10A). That case is the only one that lacks any of the three
mechanisms of contrast-dependent changes in membrane time
' constant, synaptic depression, and spike-rate adaptation. Add-
ing depression alone (Fig. BOrate model) or membrane time
constant changes alone (Fig.ALGpiking model, no adapta-

>

Response F1 (spks/s)

o

Input F1

h
=

Voltage (mV)

700' T 05 10 15 tion) suffices to give contrast-dependent enhancement of high-
a i i frequency responses. Addition of spike-rate adaptation in the
Time (sec) spiking model tends to eliminate any relative enhancement of

Fic. 9. The iceberg effect: the appearance of higher temporal frequerJQWer frequenCi_es while p.reserving _SUCh enhancement at
responses at higher contragistemporal frequency tuning curves for “flat” F1 higher frequencies. Synaptic depression also suppresses the

inputs of 15, 30, 60, and 90 Hz (prerectification values), color-coded from liggbntrast-dependent differences between LGN input conduc-
gray to black, respectively, for a spiking model simulation in which adaptatiqn%m:eS making different contrasts appear more alike to the
f the |

was present, but synaptic depression was not. Error bars indicate SDs o . .
means across 29 cells. Note that responses to 12-Hz input gratings are preggm'cal cell. This reduces the strength of ContraSt'dependem

for input F1s of 60 and 90 Hz, but essentially absent for input F1s of 15 ak@Sponse enhancement at all temporal frequencies.
30 Hz. Input F1 of 30 Hz corresponds roughly to 10% contrast, 90 Hz roughly We see at best only a weak shift in the peak of the temporal
to 80% contrast (see Fig. 1@: intracellular voltage traces, for a randomlyfrequency tuning curve with increasing contrast. At present,

chosen cortical cell, in response to a single presentation of a 12-Hz temp : AR
frequency grating at each of the 4 F1 input levels used foorresponding, at re are no experimental data as to whether LGN-recipient

12 Hz, to contrasts of 3.9, 7.8, 18.7, and 41.2%). Spiking responses in the &81IS in cat layer 4 show such a shift in peak. If they do not, but

have been turned off; spiking threshold is indicated by the dotted line. Synagittstead show only a relative increase in responses to higher
conductances for LGN inputs and nonspecific in vivo “back-ground” inputemporal frequencies at higher contrast, this could be sufficient

(seeaPPENDIX A) were turned on a@ime Q A blank stimulus was presented for . ; ; ;
the 1st 0.5 s of the trace, after which the grating stimulus appeared. Note trtlgt,mduce shifts in the tuning peaks of downstream cells.

for input F1 values of 15 or 30 Hz, the membrane voltage never crossed spike

threshold. For higher input F1 values (60 or 90 Hz), the membrane poten®&turation of responses with increasing contrast
did reach threshold, as corroborated by the increase in the spiking response

!ndlicg_ted inAl.(Tracies v(\‘/eret: etl_chieveddastfollows: all conductjlné:eds onto a cell, Last we examined the saturation of cortical responses with
Incluaing spike-rate aaaptation conauctances, were recorde uring simuila- H H H H
tions ong. F3I'hese condue:tances were then “played back” to the cgell wi ﬁcreasmg contrast (Elg. 11). Even In. the absence of depression
spiking turned off. or spike-rate adaptation, model cortical responses tend to sat-
urate somewhat earlier than their LGN inputs, particularly at
spike-rate adaptation currents (Fig. 10, spiking modstidle lower temporal frequencies (Fig. BL If either pulse or train
panels,no adaptationpbottom panelswith adaptation). In all depression is active, saturation occurs significantly earlier than
cases, we present data for both flat (dashed lines in Fig. 10) amckither the LGN inputs or the models without depression.
Sclar (solid lines in Fig. 10) LGN tuning. Thmp panelsof (The one exception is at the highest temporal frequency of the
Fig. 10, A andB, show the LGN input to simple cells. LGN spiking model, for which responses are small and the measure
cells respond better to high than to low temporal frequencie$ saturation probably inaccurate.) Moreover, clearly in the
and show slightly more contrast-dependent enhancementdepression cases, and also somewhat in the examples lacking
both high and low temporal frequencies than of middle tendepression, there is a tendency for responses to higher temporal
poral frequencies (Fig. 20 Sclar inputs). In the absence offrequencies to saturate later than responses to lower temporal
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FiG. 10. The contrast dependence of temporal frequency tuning for different outputs of the rate and spiking Xeaxieds.
temporal frequencyY-axes: fortop rows,F1 of summed LGN input to a simple cell (measured in Hz for the rate model and in nS
for the spiking model); for all other plots, F1 of excitatory simple cell firing response, measured in spikes per second. Two types
of LGN inputs were used. Model responses to “flat” LGN inputs are indicated by dashed lines; responses to experimentally
measured “Sclar” LGN inputs, Fig.A3(Sclar 1987), are indicated by solid lines. Gray lines show responses to 10% contrast
(“Sclar”) or LGN response F1 of 30 (“flat”), while black lines indicate responses to 80% contrast or F1 of 90. Note that the F1
values of the flat inputs are set before LGN outputs are calculated,; i.e., they are “prerectification” valuesgses A). Insets
responses at high-input level divided, frequency-by-frequency, by low input level responses. ForAeandBfleft columnshows
rate modelyight columnspiking model;top row shows LGN input to simple celmiddle rowshows simple-cell firing responses
without spike-rate adaptation currents, dattom rowshows simple-cell spiking responses with spike-rate adaptation currents in
excitatory cells (spiking model onlyj: no synaptic depressiofop row because depression is absent, conductances very closely
follow the temporal frequency dependence of LGN response amplitididdle row: because of filtering by the membrane time
constant at higher, but not lower, temporal frequencies (see text), as well as inhibition in the model circuit, both types of model
show low-pass behavior, as well as a relative amplification of high temporal frequency responses with cosetgsBottom row
note the band-pass nature of the response induced by spike-rate adaptation, in addition to the relative amplification of high temporal
frequenciesifise). Note thatbottom row,dashed lines oA is the same data as in Fig. 9 for 130 and F1= 90. B: “pulse”
depression.Top row with depression present, LGN input conductances no longer closely follow the temporal frequency
dependence of LGN response amplitudes; low-frequency responses show a relative attenuation, even for “flaMidgets.
bottom rows cortical outputs are correspondingly band-pass and show relative amplification of high temporal frequencies. Rate
model plots include results only for parameter sets that satisfied experimental constraintsreex A) at every temporal
frequency. There was 1 parameter set for no depression and 3 for pulse depression (plots show average over parameter sets).
Depression in the rate model was incorporated at all synapses|(& E, Fig. 7). In all cases, spiking model results show averages
over 29 cells. All error bars indicate SDs.

frequencies: for cases with depression, @alues increase plateau value. The postsynaptic cell cannot “see” further in-
monotonically with temporal frequency if the lowest temporaitreases in rate. Thus as LGN firing rates increase with contrast,
frequency is excluded. The same pattern is seen in the V1 dbk impact on the cortical cells will plateau earlier than it would
of Fig. 4, although the model G values are somewhat lowerwithout depression. This saturation occurs at higher contrasts
than those measured by Albrecht. for higher temporal frequencies, because depression more
The contrast saturation effects induced by synaptic depresongly suppresses lower than higher-frequency inputs.

sion can be readily understood. As demonstrated by Abbott etAs can be seen in the table, however, cortical responses can
al. (1997) and Tsodyks and Markram (1997), in the presencesaiturate at lower contrasts than LGN even when depression is
depression, as a presynaptic neuron’s firing rate increaseslsent. This results from the inhibition in our circuit model.
values much larger thand(wherer is the time constant of Because the cortical response is determined by a thresholded
recovery from depression), the overall postsynaptic effect of isrsion of the membrane voltage, for a sinusoidal input grating
synapses (proportional to rate times efficacy) saturates athe response of the cortex can be largely understood from the
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>

tuning curves of peak voltage and of LGN modulation show

very similar G s under various conditions (data not shown).

However, when inhibition is added, the peak voltage can show

No depression A Csp values that are lower than the corresponding LGN values,

A : because the inhibition in the model both decreases the slope of,

and adds a constant negative DC offset to, the curve of peak

voltage versus contrast. The DC offset originates from the
background firing of the LGN, which, because the cortex is
inhibition dominated, is net inhibitory. By both flattening and

0 ok 2Hz shifting the cortical response curve closer to zero, inhibition
0 50 100 4 Hz effectively causes cortical neurons to saturate sooner than their

A—h 8§ Hz inputs.

v¥ 12 Hz

J—k 16 Hz DISCUSSION

20

Response F1 (spks/s)

We have established that a simple circuit model of cat layer
4 that achieves contrast-invariant orientation tuning can also
account for three c-d nonlinearities in simple cell responses to
sinusoidal stimuli: c-d phase advance, c-d changes in the
shapes of temporal-frequency tuning curves, and contrast sat-
uration. These response nonlinearities arise locally (that is, in
50 100 a circuit in which both excitatory and inhibitory intracortical
Contrast (%) connections are primarily between cells of nearby preferred
orientations) as a result of the many nonlinear elements present
B in the LGN responses and cortical circuitry. The observed c-d
phase advance can be largely or entirely accounted for by the
100 ¢ combined effects of geniculocortical and intracortical synaptic
B LGN (Sclar 87) | depression, spike-rate adaptation currents in cortical cells, and
’!_ ﬁ‘lriﬁ" (Albrecht 95) c-d changes in cortical cell conductance. The greater ratio of
& ,,:,15552‘;11‘;::0,, high-contrast to low-contrast responses for high versus low
B Train depression temporal frequencies arises from the interaction of these non-
| linearities with the spike threshold, along with the dominance
L . of inhibition in our model circuit. Finally, the inhibition in our
3 model circuit causes cortical cell responses to saturate at
f slightly lower contrasts than do the LGN inputs, while synaptic
4_8 depression causes a much stronger decrease in cortical saturat-
-' ing contrast relative to LGN.

These results were derived in the context of a circuit model
that has previously been shown to account for a wide variety of
observations related to orientation tuning in cat layer 4 (Troyer

oL : d - et al. 1998). However, only some of the present results depend
112 3/4 6 8 10112 15/16 on this circuit model. The circuit model was critical to estab-
Temporal Frequency (Hz) lishing that the c-d nonlinearities studied here could coexist

Fic. 11. Model data for the temporal frequency dependence of contrr}\lg{th the more linear-like behavior of contrast-invariance of

saturation.A: model contrast saturation curves for spiking model (averag&¥i€ntation tuning. In addition, the relationships of inhibition
over 29 cells) with spike-rate adaptation, with no depression and with pul@gid excitation in the circuit model are critical to the threshold

depression. Light gray to dark gray: increasing temporal frequeBicgatu-  effect underlying the c-d changes in temporal frequency tun-

rating contrast (&, in fit of Naka-Rushton curve to contrast saturation curve)n - it is crucial that inhibition is dominant so that the mean
vs. temporal frequency for LGN cell (Sclar 1987) and cortical cell (Albrech 9-

1995) of Fig. 4 (dark bars) and for model cells with no depression, pulgapm is subthreshold, _Sm_Ce Suprathres_hOId mean input would
depression, or train depression (white, light gray, dark gray) in rate mode®Us€ small changes in input modulation to have only small
(solid bars) or spiking model (hatched bars). Horizontal line shows megn @&ffects on responses; and it is crucial that inhibition is spatially
]trom over 100 Cta:j ylAfki)mplﬁt ?fg;é)e?fh a}: c;r nealr its %pttimaldtempo@pponent to excitation, so that excitation can periodically drive
requency, reported in Albrec . Results for pulse and train depress ; ; ; : ;
argquali)t/ativgly similar. As described in the text, (E’ortical responsesptend W—gbppnses to a pr.ef.e.rred_onen.tathn grating desplte this pyerall
saturate at lower contrasts than do their LGN inputs, and responses to hig‘i@lmmance of _'nh|b't'0n- The circuit model used is not Cm'cal_
temporal frequencies saturate at higher contrasts. Depression in the rate mt@éhe mechanisms of c-d phase advance and contrast saturation
was incorporated at all synapses (Gl + E, Fig. 7). explored here, although the inhibition in the model circuit does

contribute to contrast saturation.

peak membrane voltage. We estimate this peak as the sum of i i )

the mean voltage and the modulation amplitude, or first haro€xistence of linear and nonlinear response properties
monic, of the voltage. In the absence of inhibition, this peak We have emphasized that it is important not simply to
voltage closely follows the modulation of the LGN inputexplain nonlinear response properties, but to understand how

Response F1 (spks/s)
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they can coexist with “linear-like” properties such as contrasihe more elaborate spiking model, and the ability to understand
invariant orientation tuning. In particular, how can the circuttheir differences in terms of the specific additional nonlinear
show contrast invariance in the tuning for orientation at eachechanisms present in the spiking model, give confidence that
temporal frequency, and yet show contrast dependence in the understandings achieved here of the contribution of each
tuning for temporal frequency at the preferred orientation? nonlinear mechanism to each nonlinear response property are
The answer is that key nonlinearities within the circuit varfairly robust; i.e., independent of specific implementation. Fur-
with temporal frequency, but not with orientation. As notether mechanisms not considered here may also play a role, such
previously, each grating presented to the circuit gives rise as further nonlinearities in LGN responses, other active mem-
both a mean voltage and a voltage modulation about that melrane conductances beyond spike-rate adaptation (McCormick
A change in orientation away from the preferred does not alt€890), nonlinearities of dendritic integration (e.g., Larkum et
the mean input to a cell, but only decreases the input modudd- 1999), synaptic facilitation, which is seen at many excita-
tion. The contrast-induced growth in the mean responset@y synapses onto inhibitory interneurons (Thomson et al.
converted into inhibition that offsets the concomitant growth ih993), or the presence of NMDA receptors, which can alter
the modulations, which is roughly proportional across orienteemporal frequency tuning in our model (Krukowski 2000).
tions, yielding contrast-invariant orientation tuning. The situFhese uncertainties limit our ability to make strong quantitative
ation is different for temporal frequency: both the mean and tipeedictions. But the present results establish the viability of a
modulation of the input are altered by a change in tempordakal explanation of contrast-dependent nonlinearities, and
frequency. Synaptic depression strongly suppresses the injmaly allow qualitative tests, discussed further below.
mean relative to the input modulation at low temporal frequen-
cies, but not at higher temppral frequencies (Krukowski Zooglip?licability of the model to other species
Furthermore, an increase in stimulus contrast causes greate
amplification of input modulations at higher versus lower tem- Contrast-dependent nonlinearities have also been studied in
poral frequencies, because of c-d decreases in membrane tinmmkeys. Data there, although also limited, seem qualitatively
constant as well as depression and spike-rate adaptation.deirsistent with those in cats (Albrecht 1995; Carandini and
nally, LGN input firing rates show a slightly greater contrastdeeger 1994; Carandini et al. 1997; Hawken et al. 1992).
dependent increase at high than at low temporal frequencilewever, response properties in the LGN-input-recipient por-
Thus the contrast invariance of orientation tuning and th®ns of monkey layer 4 are quite different from those in cat
contrast dependence of temporal frequency tuning follow frolayer 4: while cat layer 4 consists very largely of classical
the frequency- but not orientation-dependent nature of teémple cells [cells with aligned and oriented, segregatednd

circuit nonlinearities. oFf subregions and strong orientation tuning (Bullier and
Henry 1979; Gilbert 1977)], monkey layer 4C has few such
Limitations of the present work cells (Blasdel and Fitzpatrick 1984; Hawken and Parker 1984).

Thus our model circuit is unlikely to apply directly to mon-
Several of our explanations depend on the existence keys. As we discussed above, many of our explanations of c-d
sufficient synaptic depression in vivo. One study reported thanlinearities are independent of the circuit studied. In the
cortical depression appears weaker in vivo than in vitreases where the circuit plays a role, the critical elements of the
(Sanchez-Vives et al. 1998), but speculated that this may regiiftuit are the dominance of inhibition and its opponency with
simply from the greater baseline rate of depression in vivo de&citation. We have conjectured that these may be general
to background activity, an effect included in our modelingorinciples of cortical layer 4 circuitry (discussed in Troyer et
Support for a functional depression-like mechanism in vival. 1998), and so in particular might also characterize layer 4 of
was reported by Nelson (1991a,b): responses in cat V1 wenenkey V1.
suppressed by repetition of visual stimuli in a manner consis-
tent with both synaptic depression andla prgsynaptic origin. Vﬁﬁperimental tests of the model
attempted to control for the uncertainty in the strength of
depression by studying two different in vitro parameter sets; The present explanations of c-d phase advance can be di-
they showed little difference in behavior except that the tranectly tested by blocking spike-rate adaptation and/or synaptic
parameters reduced the difference between low- and higlepression and determining whether this decreases c-d phase
contrast response amplitudes. advance. Spike-rate adaptation can be blocked by several phar-
The model weakly suggests that geniculocortical depressimacological agents (Baskys 1992; Nicoll 1988). If applied
may be less strong than in either of these parameter sétstophoretically to individual cells, these should reduce c-d
Geniculocortical synaptic depression with these parametgobase advance [although spike-rate adaptation may not be as
and particularly with the train parameters, led model cells &irong in vivo as in vitro (Tang et al. 1997)]. Selective inter-
saturate too early, relative to cortical cells (Fig. 11). Howevevention against synaptic depression is more difficult (see Dis-
nonlinearities in LGN temporal response profiles beyond tlession in Chance et al. 1998).
simple rectification considered here might alter this result. In The combined role of LGN response nonlinearities and
particular, LGN responses tend to occur over significantly legeniculocortical synaptic depression in both c-d phase advance
than a half-cycle of a sinusoidal stimulus (e.g., Reich et a@nd contrast saturation could be assayed in intracellular record-
1997); this would be likely to affect response saturation simings from simple cells, by using electrically evoked cortical
larly to going to a higher temporal frequency, for which satwsuppression (Chung and Ferster 1998) to isolate geniculocor-
ration occurs at higher contrasts. tically driven currents during presentation of sinusoidal grating
The similarity of results in both the simpler rate model anstimuli. By comparing c-d response properties of these input

Downloaded from journals.physiology.org/journal/jn (096.224.087.234) on July 30, 2020.



2144 A. KAYSER, N. J. PRIEBE, AND K. D. MILLER

currents to those of the cell’s voltage response with the cortigabcessing, the normalization model integrates a wealth of data
circuit intact, the degree of involvement of cortical mechdn a simple way.

nisms could be assessed. Comparisons to average LGN firinglowever, as a mechanistic explanation, this model is prob-
properties might be used to assay the role of geniculocortigaénatic. First, it assumes that simple cells receive input that is
synaptic depression; we would predict that these input curresisaled linearly by changes in contrast, e.g., the input has
would show greater c-d phase advance and earlier contrgghtrast-invariant orientation tuning; it then argues that addi-
saturation than LGN firing rates. tion of divisive or “normalizing” inhibition will explain re-

The explanation of c-d changes in temporal frequency tunikgonse nonlinearities without disturbing input tuning for spatial
could be tested by measurements of the membrane potentighigperties such as orientation. We have instead emphasized
response to high-temporal-frequency gratings of increasifight both the LGN input and the circuit are nonlinear, e.g., key
contrast. In cells showing a c-d change in the shape of tempafghlinearities in LGN responses are the c-d growth of the
frequency tuning curves favoring higher temporal frequenciafean, saturation of the F1, and advance of the response phase.
we predict a threshold effect: as contrast increases, the spik&&cond, the normalization model's explanations of temporal
response should increase faster than the voltage responsenonlinearities require unrealistically high membrane time con-

stants. The model proposes that the phase advance and the
Other experimental work suggested by the model high-temporal-frequency cutoff at a given contrast are de-
) ) ) termined by the membrane time constant-d nonlinearities

As we emphasized in the section BXPERIMENTAL FINDINGS  gre explained by decreases inwith increasing contrast, in-
ADDRESSED the data on response nonlinearities remain quigRiced by the increase in membrane conductance from the
sparse. None of the data in cats are known to be from layep4rmalizing inhibition. However, V1 cells often show low-
(although most are from identified simple cells); it will b&ontrast [or even high-contrast (Saul and Humphrey 1992)]
important tO detel’mlne the degree to Wh|Ch Iayer 4 Ce||S eXhl@&toff (frequency Showing ||tt|e or no response):a{: 10-15
these nonlinearities. LGN Y cells show stronger respongg (Albrecht 1995; Carandini et al. 1997, Fig. 7). For such a
nonlinearities than X cells, emphasizing the importance e{jtoff to be simply due tor, one must haver > 1/F, i.e.,
correlating nonlinear cortical response properties to the prgreater than 66100 ms (see footnote 2). Yet time constants of
portion of X or Y input received by a cell. LGN and corticalcortical cells in vivo are only 15-24 ms (Hirsch et al. 1998) at
response nonlinearities have not been studied under the sag¥¢ and can only decrease under visual stimulation. Similarly,
conditions or in the same animal, with the exception of ong20° c-d phase shift in response to a 2-Hz stimulus (a temporal
study in monkeys (of contrast saturation, Sclar et al. 199Q)dvance of 28 ms) would require a c-d decreasedh28 ms>

This is particularly important for temporal response propertiegych a large decrease between 10 and 80% contrast seems
which may be quite mutable by different types of anesthesigglikely.

increases in inhibition, as induced by barbiturates, can cause &he normalization model also requires divisive inhibition

lower temporal frequency cutoff in responses at a given cofirat depends only on contrast, independent of orientation. This
trast in our circuit model, while blockade of NMDA receptorsis necessary, for example, to explain contrast saturation or c-d
e.g., by ketamine, can have variable effects on temporal fighase shifts of responses to nonpreferred stimuli. Experimental
quency tuning (Krukowski 2000). data now show that there is a contrast-dependent conductance
Further data on the dependence of c-d phase advancejitease that, at preferred orientations, can be as high as two-
temporal frequency and stimulus orientation, particularly in cgf threefold, but which is tuned for orientation (Anderson et al.
layer 4, could limit potential parameters and mechanismspoo; Borg-Graham et al. 1998; Hirsch et al. 1998). The
Albrecht (1995) reported a weak positive correlation betweg@responding reduction in time constant can certacolytrib-
c-d phase advance and temporal frequency across cat gfgto phase advance (Fig. 8, “no A, no D”) and to the threshold
monkey simple cells. We do not see such dependence in @gect that we argue explains contrast-dependent changes in
average results, but individual parameter sets can show sysfporal frequency tuning. However, any such contribution
dependence (e.g., Fig. 6). Similarly, data for a few cells §jll have orientation tuning like that of the conductances.
monkey V1 (Carandini et al. 1997) showed little dependence Rhother significant problem is that the normalization model
c-d phase advance on stimulus orientation. While averaggsumes that shunting inhibition will give this divisive effect,
phase advance in the rate model showed no dependenceyf@reas recent theoretical studies suggest that the effect will be
stimulus orientation for orientations that give appreciable rgyptractive rather than divisive (Holt and Koch 1997).
sponse, we have not carefully examined the parameter depenanother model (that of Chance et al. 1998) independently
dence of this result, and orientation dependence would Bfived at some of the same qualitative ideas that we have
expected for components of c-d phase advance due to adagireloped here (see Chance et al. 1997; Priebe et al. 1997). In
tion or conductance changes, which were not included in thgrticular, they also pointed out that synaptic depression of

rate model. feed-forward synapses could contribute to c-d phase advance,
although they found<4° of c-d shift per 3 octaves of contrast
Comparison to other models at 2 Hz (their Fig. &) and, curiously, did not find any c-d shift

for temporal frequencies of 8 Hz or higher. They did not

The importance of understanding the nonlinearities studigddress the other nonlinear response properties or mechanisms
here has been emphasized by studies of the normalization

model (AIbrecht and Geisler 1991; Carandini et al. 1997, 19985 For 2nfr < 1, e.g.f < 8 Hz for typical cortical resting time constants in

Heeger _19_92)- These studies haye 5tr0ng|_y _influencec! UAR of + = 20 ms (Hirsch et al. 1998), arctand®)/2f ~ 7, hence the phase
field’s thinking: as a phenomenological description of corticablvance (footnote 1) simply becomgs— 7,.
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addressed here and did not address the coexistence of lin&&at’ simulations, in which these amplitudes were set to four arbitrary
like and nonlinear response properties. values (15, 30, 60, and 90 Hz) that were held constant across temporal
frequencies. To assign contrast valu@go the flat amplitudes, we

S Arini ; . used matlab’s “curvefit” function to fit the prerectification F1 values
Conclutslon. origins of nonlinear and linear response R at each temporal frequency fox cells (matched to the Sclar data)
properties with Naka-Rushton curves (Albrecht 1995)

As the circuit model presented here has emphasized, many
aspects of cortical processing are inherently nonlinear, includ-
ing spike thresholds, adaptation, synaptic depression, conde@m the fit curves we found the corresponding contrasts for each
tance effects, and the contrast dependence of the input. Onteectification F1 at each temporal frequency. We then combined the
other hand, many spiking responses of cat simple cells cands¢a derived from flat inputs with those from Sclar inputs to generate
understood roughly in terms of linear filtering of the stimulugontrast saturation curves (Fig. 4). Experimental contrast-saturation
(e.g., DeAngelis et al. 1995; Sclar and Freeman 1982; Skottd#a were aiso fit to Naka-Rushton curves using curvefit.
et al. 1987, 1991a). Based on these findings, one theoreticalhe Prerectification F1s as chosen above were further modified by
approach is to consider simple cells as a rectified linear filt e of the center-surround LGN spatial filter (Linsenmeier et al. 1982;

. . . ichl and W le 1979 inT t al. (1998). All ti
and to seek nonlinear corrections that can give a more comptgIC anc vvassie ) as in Troyer et al. ( ) graings were

T ) Bwn at the preferred spatial frequency of the model cortical cells
account of spiking responses (e.g., Albrecht and Geisler 199d.535°/cycle (Troyer et al. 1998)], so the prerectification modulation

Carandini et al. 1997, 1998). o o _ amplitude was reduced by the amount predicted by this filter relative
While this approach is useful in describing spiking behaviofg its value at the preferred spatial frequency of the LGN cell spatial
we suggest that when mechanistic explanations are sought,filter (0.54 cycle/deg).

problem should be turned on its head. Simple cell respons&siricaL rrs. The distribution of LGN synaptic weights to a
must be understood in terms of cortical cells and circuitsimple cell was described by a Gabor function (Jones and Palmer
which are inherently nonlinear. The greatest difficulty is ext987), as in Troyer et al. (1998), “default’ parameters.

plaining why the behavior of the cortical C"F““ appears "ne%rYNAPﬂc DEPRESSION. The equations used to model synaptic de-
in key respects. For example, understanding how orientatigRssion are described impenpix B. We examined synaptic depres-
tuning comes to be contrast invariant has been a key problefgh in each of the three types of weights (G, E, and 1) in the rate
for understanding V1 circuitry (Ben-Yishai et al. 1995; Somefsodel, but only in the G weights in the spiking model. In both models,
et al. 1995; Troyer et al. 1998). As we have seen here, theight values must be changed when depression parameters are
particulars of the circuitry that achieve this linear-like behavighanged [to maintain the network in a stable range, Troyer et al.
for orientation tuning need not generalize to other respon€@98, Fig. 13)]. Exploration of such parameter dependence is com-
properties, such as temporal frequency tuning. Thus we sug gtlonglly expensive in the spiking model, so we did not explore
that the key mechanistic question is not why simple-cell proptracortical depression in that model.

erties are nonlinear, but rather how they come to appear linear.

Once the latter has been explained in a circuit model, one daate model

see to what extent other, nonlinear behavior may emerge

naturally from such biological nonlinearities as thresholds, !N the rate model, the LGN was structured as 2331, 6.8°x 6.8°

synaptic depression, adaptation, and conductance changedetinotopic grid of cells, with retinotopic position varying linearly
across the gridon cells were positioned at the vertices of the grid,

while oFr cells lay at the center of each square within the grid; this
APPENDIX A: DETAILS OF COMPUTATIONAL offset is motivated by Wassle et al. (1981). The choice of 331
METHODS grid in the rate model, versus 30 30 grid in the spiking model, was
ade simply so that a singtex cell would lie at the center of the grid.
We examined 192 model cortical simple cells (96 excitatory and 96
inhibitory) located at the single retinotopic position defined by the
. . central LGNon neuron. Each set of 96 cells represented each com-
Elements in common to both rate and spiking models bination of 12 evenly spaced orientations (at 8—173°, to minimize grid
ARCHITECTURE. Both rate and spiking models are structured adiscretization error) and 8 evenly spaced spatial phases (0-315°).
follows. There are geniculocortical (G) synaptic weights connectirigesponses were studied to gratings of optimal spatial frequency and
the LGN to the cortex, and two types of intracortical weights, excwith orientation 38° (again chosen to minimize discretization effects).
tatory-to-excitatory (E) and inhibitory-to-excitatory (I) (Fig. 1). TheResponses for a given parameter set are the average over responses of
intracortical connections instantiate the cat layer 4 circuit modell eight excitatory cells preferring 38°.
proposed in Troyer et al. (1998). In the rate model, geniculocortical weights were set to the value of
GENICULATE RESPONSES. Geniculate firing rates in response tothe Gabor at the corresponding retinal position, where positive (neg-

drifting sinusoidal stimuli are modeled, as in Troyer et al. (1998), &ive) values of the Gabor correspond to weights fnforr) inputs.
linear rate modulations (rectified at 0 Hz) about background ratesoPnections between cortical cells were correlation-based, as in
15 and 10 Hz foron andorr cells, respectivelyon cell modulations .
were at the stimulus phase, aoek cell modulations lagged by 180°. tudes of thew and —w frequency components of the Fourier transform, when
Prerectification modulation amplitudes were chosen for each contriét transform is normalized so that the FO or DC is the mean rate; this

: - ...nQrmalization is standard in neurophysiology (Skottun et al. 1991b). We have
and temporal frequency so that the first harmonic (F1) of the reCt'f'ﬁ viously (Troyer et al. 1998) incorrectly stated that this normalization of the

rate modulations matched data from Sclar (1987, F'gl' &jcept in F1 requires that the Fourier transform have an extra factor of two relative to the
normalization that makes the FO equal to the mean rate. This mistake was due

4 Throughout, we normalize the F1 to equal the amplitude of the sinusoidal our neglect of the-w component, which has equal amplitude to the
component at the frequency of the grating stimulus. If the LGN input ha®mponent; the factor of two is accounted for by including the negative as well
temporal frequency, this normalized F1 is given by the sum of the ampli-as positive frequency components.

R(C) = RyaC"(C" + C50) (A1)

Here we present the full details of the methods necessary to reﬁ'ﬂ
cate our work.
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Troyer et al. (1998) witn,,,, = 5, except that there was no stochas 5) “Amplification ratio” >1 and <5 for both 10 and 80% contrast

ticity: connection strengths were simply set equal to the connectivityeferred orientation sinusoidal gratings (defined as ratio of F1 of

function C(a, b) defined in that reference. voltage response with full cortical circuitry intact to F1 of voltage
Dynamically, neurons in the rate model obeyed the followingesponse induced by geniculocortical inputs alone); these values are

I/E,

equations. Let,*(t) = the firing rate of inhibitory/excitatory ceat - comparable to the limits suggested in Ferster et al. (1996) for re-

time t, v, ~(t) = the voltage of inhibitory/excitatory ceK at timet, sponses to 2 Hz, 64% contrast drifting sinusoidal gratings at the
i = the time constant of the inhibitory/excitatory cell membrangyeferred orientation.

_ . C . Tern
G(t) = the geniculocortical input to cel at timet, wig™"<(t) = the 6) Mean cortical firing rates between 10 and 30 Hz for preferred
synaptic efficacy of the connection from inhibitory/excitatory ¢eédi orientation stimulus at 80% contrast.
exc!iaiory Ce”k at tclﬂrlnet,_e”E ﬂ: the f'rt't?g ;Trfﬁgr("g f?/r ||;1h|b|top{/h Parameter searches were performed separately for each temporal
excitatory cets, ancioor = a floor on the membrane votage o efrequency of stimulation. In Fig. 7, we show all parameter sets that
cells (see below). The firing rate for excitatory or inhibitory dels e o . ;

satisfied these criteria at a given temporal frequency, without regard

rE() = [ — 6F]° for whether the criteria were also satisfied at other temporal frequen-
cies. All other figures show only those parameter sets that satisfied the
rit) =[vi®) — 6'71" criteria across all temporal frequencies, except that requirements on

) o F1 ratios and mean cortical firing rates at high contrast were not
where " = x, x > 0; = 0, otherwise. The activity update for gntorced for temporal frequenciess Hz or for the flat F1 value of 15
inhibitory cellk is Hz (these exceptions were made because responses at these frequen-
\ cies and for these inputs were too small to meet the criteria). For the
T'm%= — vi(®) + G(b) “no depression” case, the low bound on mean firing rate at high
ct contrast was also relaxed slightly (te9.5 Hz) to allow generation of
a contrast saturation curve (Fig. 4).
and .
The range of values of the seven parameters over which we con-
ducted our search was as follows. For four of these parameters, this
N N rﬁngelvaried with tkt:e Ifoc?ltit?n(s) of deprgssing synapses; fcl)r example,
_ _ i1 e E the relative strength of inhibition required to prevent cortical runaway
D = Y = 2w 0ri) + 2w (0o was much less w%en intracortical eicitatory gepression (E depression)
was present. For cases in which E depression was present, we
where N is the number of excitatory or inhibitory neurons. Thesearched through all combinations of the following values for these

The inputs to excitatory cek from geniculocortical, inhibitory,
intracortical excitatory sources are

=1 =1

activity update for the excitatory cellis four parameters:
1) 65=24,6
o dof . . 2) Ggain= 1.0, 2.0, 4.0, 8.0
g —of(t) + ngt), vE> floor (A2) 3) | - E gain= 0.15, 0.25, 0.35, 0.45
4) E — E gain = 0.06, 0.09, 0.12, 0.15
=[—vE) + n(t)]", vE = floor (A3) When E depression was absent, we instead searched through all

combinations of the following values for these four parameters:

Outside of the (fixedf and  values for depression, the rate model 1) 6 = 3, 6, 9
had eight parameters: the membrane time constants, the firing thresft) G gain = 0.5, 1.0, 2.0, 4.0
olds, and the gains of G, |, and E weights, as well as the voltage floor3) | — E gain = 0.25, 0.35, 0.45, 0.55
The gains were scalars representing the summed synaptic strength dj E — E gain = 0.02, 0.04, 0.06, 0.08
each type (G, I, E) received by each cell. This normalization wasIn all cases, we searched through all combinations of the following
achieved by multiplicatively scaling all weights of a given type on &alues for the remaining three parameters:
given cell. The voltage floor was the value below which any neuron’'s5) 7 = 8, 12, 16 ms
membrane potential was not allowed to go; if the membrane potentiab) 7, = 75/2
attempted to drop below the floor, it was clamped to the floor poten-7) 6' = 1, 2, 3, with¢' < ¢F
tial. This was included merely to represent the lower bound on tfigne number of combinations searched was 1,344 when E depression
membrane voltage imposed in real neurons by the potassium revevgas present, 1,536 when it was absent. Note that we biased our
potential. This floor was somewhat arbitrarily set+@®0, but this selection toward smaller membrane time constants than those reported
value was not critical; the behavior of the model was quantitatively vitro (20 ms for excitatory, 12 ms for inhibitory neurons) (McCor-
similar for a floor value of-75, and only marginally different for a mick et al. 1985), and in vivo in the absence of a stimulus (15-24 ms
very “depolarized” floor value of-5. for excitatory cells) (Hirsch et al. 1998), to account for the additional

Outputs of the model (excitatory cells only) were determined amnductances opened during stimulation.
averaged across the appropriate cells. The seven parameters other th@ihe c-d phase advance was found by subtracting the phase of the F1
the floor were then determined by searches through this seven-parafmthe cortical response to 10% contrast gratings from that to 80%
eter space for all parameter combinations that satisfied the followiagntrast gratings. As most simulations weffe2os duration, phase

criteria: analysis was performed on the last 500 ms, when the geniculocortical
1) 75 > 7}, (McCormick et al. 1985). and intracortical excitatory depressing synapses would have reached
2) 65 > 6' (McCormick et al. 1985). steady state. [Intracortical inhibitory synapses fit to the train data (

3) Standard deviation of the orientation tuning curz®.20° at all 1,017 ms) would not have reached steady state, but the influence of
contrasts (defined ag’>; r;(6; — 6,)°/Z; r;, wherer; is the response to the inhibitory depression is weak. We found in several example cases
the ith orientation6;, and 6, is the preferred orientation of the cellthat examining the last second of 6-s runs caused negligible changes
studied). in results.]

4) Invariance of orientation tuning width with contrast (Sclar and The activity and depression equations were discretized using simple
Freeman 1982), defined as a ratio of the standard deviation ofigt-order Euler methods and 2-ms bins. Test runs using 0.25-ms
Gaussian fit to the orientation tuning curve at low (10%) and higlesolution demonstrated that this bin size caused negligible changes in
(80%) contrast between 4:5 and 5:4. our results.
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Spiking model 7, as desired. The form of the last term is determined by the fact that
the change in efficacy after a spilkg is proportional to the current
The spiking model was implemented as in Troyer et al. (1998). Allalue of the efficacyw(t); 2) is proportional top(t) (so that it is zero
parameters were as in that reference except for the overall synapiithe absence of a spike, and infinite—an infinite valuewat and
strengths of geniculocortical and intracortical synapses. These valtass a discontinuous change Wwa—in the presence of a spike). In
were determined, after sampling the synaptic weights as just deidition,3) the term must have the same dimensionsvaachieved
scribed, by multiplying all synaptic weights of a given type (G, E, oby multiplying by 7, leavingc as a dimensionless constant.
1) by a single constant to set the total strength of such synapses. Thesene value ofc is determined as follows. Let the times infinitesi-
values were chosen to constrain the standard deviation of the orierally before and aftet; be denoted;” andt;", respectively. Depres
tation tuning curve to bec0.20° at all contrasts, as in the rate modelsion is represented by the equatisft;”) = fw(t;"). To determine the
and to ensure contrast invariance at all temporal frequencies. Synapfiike-induced change im, we integrateEq. Blfromt;” tot;"; because
strength is defined in terms of the integrated current response induttgig is an infinitesimal interval, only integrands that are infinite during
when the cell is voltage clamped 4, ..n,and all synapses of a giventhat interval give a nonzero result. Becawgechanges discontinu-
type are activated once (Troyer et al. 1998). Each excitatory cellsly, dv/dt is infinite in the interval; so too is the term involvinpgt).
received a total inhibitory synaptic strength-6114.726 nA ms, and a The other two terms integrate to zero and can be neglected. However,
total intracortical excitatory synaptic strength of 3.112 nA ms, yieldwe cannot simply integrategcp(t)w(t)], because we do not know how
ing mean unitary conductance valueggf= 7.59 nS andicy = 0.37  w(t) itself is changing over the interval—e.g., shouitt) bew(t,") or
nS. We used three separate values for the total geniculocortiegt)? To solve this, we divid&€q. B1by w(t) and multiply by d/7
synaptic strength onto each cortical cell, depending on the parametssfore integrating, yieldirny
used for geniculocortical depression: “no depression,” 3.112 nA ms,
with mean unitary conductan@g; = 0.32; “pulse” parameters, 8.86 wit) dw Y
f c f > 8t — tdt
(t) tj

nA ms, with a mean unitary conductancegif = 0.92 nS; “train” =- (B2)
parameters, 26.45 nA ms, with a mean unitary conductangg;of
2.7 nS. Note that we held total inhibition fixed, although we could
have reduced this value when depression was present [becauseotrje-
pression attenuates the untuned (DC) component of the geniculocor- Wit
tical input]. Since total inhibition is a free parameter, and reducing c=-In——=
(increasing) inhibition broadens (tightens) both orientation and tem- WK
poral frequency tuning, we have some freedom to control these tuniﬁgus our equation for synaptic depression is
widths, yet remain within the experimental constraints.

The results presented here for the spiking model show model dw
responses to drifting gratings at 105°. After a 500-ms “blank stimu- T = W) + Wia + 7(In F)p(OOW() (B4)
lus,” during which time the cortical and LGN cells fired at background
rates, a moving grating stimulus was presented for one second. Phase
advances were calcul.a.ted by first constrgcting a hist.o'gram of (BRich can be integrated to yield
sponses from 10 repetitions of the same stimulus condition, and then
taking the Fourier transform of the final 500 ms of these histograms. t
We compared the difference in the phase of the response to 80 aul= w(0) exp{f -+ N(t, 0)In f]
10% contrast gratings on a cell-by-cell basis, for all excitatory neurons 4

w

W

—Inf (B3)

with preferred orientation in the 5°-wide bin around 105° (preferred A t—1)
orientations 102.5 through 107.4°); there were 29 such excitatory +ﬂf dt, exp{77+ N(t, tl)lnf] (B5)
neurons for the orientation map used. T Js 4

whereN(t,, t,) = [ p(s)dsis the spike count in the interval,( t,).
We now derive an equation for the mean efficamft) = E[w(t)],
APPENDIX B: A RATE MODEL OF SYNAPTIC in terms of the mean rate(t) = E[p(t)]. Here E[-] means an expec-
DEPRESSION tation over a set of stochastic realizations. We assume the spike train

. . . . (t) is a Poisson process with mean refg, so the expectation value
We model synaptic depression as in Abbott et al. (1997; see a‘o§cbver Poisson realizations of spike trains. The spike cav(t, t,),

Tsodyks and Markram 1997): following a spike, the synaptic efficaqy poisson distributed with meaff r(s)ds The equation forut) is
is multiplied by the fractiorf, where 0= f =< 1, and between spikes ¢, nq py taking the expectation value of both side€qf BS,where

the efficacy recovers with time constanttoward its undepressed pynsiochastic quantities can be brought outside the expectation values
value. It is clear how to model this in a spiking model, but not in a rate

model. To determine this, we first derive an equation that behaves t
appropriately for the spiking model, and then derive a rate mod&(t) = w(0) exp<—7>E{exr{N(t, 0) Inf]}
equation as an appropriate average of this spiking model equation. T
We begin with the spiking model equation. Lvft) be the efficacy W [ t—t)
at timet. Let the presynaptic spike train be denotedpfty = >, 8(t — e dt; exp[— . }E{eXdN(t, t)Infl (B6)
t,), where presynaptic spike times are denoted; @nd 5(x) is the 0
Dirac delta function. Our desired equation is of the form

Thus to computev(t), we must compute expectation values of the

T dc]ltv = 7W(t) + Winay — TCP(t)W(t) (Bl)

1 ..w . .
5 Note that these operations yield a tefmfi —.— dt , which could also in
T

. . . - wW(t)
wherec is a to-be-determined constant. In the absence of a presynaptificiple be nonzero, ifv(t) = 0. However,w(t) can never reach zero for

spike p = 0), wdecays exponentially towa with time constant nonzerof and finiter.
ax
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form E[exp(cn)], wheren is Poisson-distributed with mean BoRG-GRAHAM LJ, MoNIER C, AND FREGNAC Y. Visual input evokes transient
and strong shunting inhibition in visual cortical neurom$ature 393:
» = e 369-373, 1998.
E[expcn)] = >, P(n = K) explck) = Eexp(fm)<—> exp(ck) (B7) BULLER J AND HENRY GH. Laminar distribution of first-order neurons and
o K afferent terminals in cat striate cortekNeurophysio#2: 1271-1281, 1979.
CARANDINI M AND HEEGER DJ. Summation and division by neurons in visual
cortex. Science264: 1333-1336, 1994.

k=0

* k
= exp(—m) ZW =exp(—m) exgmexpc)]  (B8) CARANDINI M, HEEGERDJ, AND MovsHon JA. Linearity and normalization in
o K! simple cells of the macaque primary visual cortdxNeuroscil7: 8621—
8644, 1997.
=exg—m(1 - €] (B9)  CarANDINI M, HEEGERDJ, AND MovsHoN JA. Linearity and gain control in V1
simple cells. In:Cerebral Cortexedited by Jones EG and Peters A. New
Applying this result toEq. B6yields York: Plenum, 1998, vol. 13.

CHANCE FS, NELson SB, anD ABeoTT LF. Effects of synaptic depression of
o t = temporal nonlinearities in responses of model simple c&ts& Neurosci
W) = w(0) ex"{_ -~ A= DN 0)] Abstr 23; 1266, 1997.
CHANCE FS, NELson SB, anp ABsoTT LF. Synaptic depression and the
w, t t—t _ temporal response characteristics of V1 celldNeuroscil8: 4785-4799,
+ ma*f dty exp[— L tl)] (B10) 1008 P
T T R
0 CHENG H, CHINO YM, SmiTH EL, HAamMAMOTO J, AND YOsHIDA K. Transfer
characteristics of lateral geniculate nucleus X neurons in the cat: effects of
spatial frequency and contrastNeurophysiol74: 2548-2557, 1995.
CHINO YM, CHENG H, SwiTH EL 3rD, GARRAGHTY PE, FoE AW, AND SurR M.
Early discordant binocular vision disrupts signal transfer in the lateral

whereN(t,, t,) is the mean number of spikes resulting between times
t, andt, from a Poisson process with mean rag.
Finally, the differential equation fora(t)/dt that produce&q. B10

as a solution is geniculate nucleus?roc Natl Acad Sci USA1: 6938—6942, 1994.
B CHUNG S AND FERSTERD. Strength and orientation tuning of the thalamic input
. dl" = W) + Wy — (1 — HFOWD (B11) to simple cells revealed by electrically evoked cortical suppresslenron
dt 20: 1177-1189, 1998.

Dean AF anp TorHursT DJ. Factors influencing the temporal phase of
where we have noted that the mean ret¢ = E[p(t)] is given by response to bar and grating stimuli for simple cells in the cat striate cortex.
r(t) = dN(t, 0)/dt. Note that forf = 1 (i.e., no depression), the Exp Brain Res2: 143-151, 1986. _
depression term disappears, as it should. This equation (discretiZ&gfNGELIS GC, O+4zAWA |, AND FREEMAN RD. Spatiotemporal organization of
i.e., dw/dt replaced byAw/At) serves as the update rule in the rate simple-cell receptive fleld_s in the cat’s striate cortex. II. Linearity of tem-
model. poral and spatial summatiod.Neurophysiob9: 1118-1135, 1993.

DEANGELIS GC, OHzawa |, AND FREEMAN RD. Receptive-field dynamics in the

central visual pathwaydrends Neurosci8: 451-458, 1995.
We thank A. Krukowski, T. Troyer, and A. Hoffman for many usefulFERSTER D. Orientation selectivity of synaptic potentials in neurons of cat
conversations and assistance with simulations, B. Bialek for outlining to usPrimary visual cortexJ Neuroscié: 12841301, 1986.
what is now inapPENDIX B, and S. Lisberger for reading a preliminary draft of FERSTERD. Spatially opponent excitation and inhibition in simple cells of the
the manuscript. cat visual cortexJ Neuroscig8: 1172-1180, 1988.
This work was supported by a Biomedical Engineering Research Grant fréieRSTERD. X- and Y-mediated current sources in areas 17 and 18 of cat visual
the Whitaker Foundation, a Searle Scholar's Award, an Alfred P. Sloancortex.Vis Neurosci: 135-145, 1990a.
Foundation Research Fellowship, and National Eye Institute Grant RO1-ERERSTERD. X- and Y-mediated synaptic potentials in neurons of areas 17 and
11001, all to K. D. Miller. 18 of cat visual cortexVis Neurosci4: 115-133, 1990b.
FERSTERD, CHUNG S, AND WHEAT H. Orientation selectivity of thalamic input
to simple cells of cat visual corteature 380: 249-252, 1996.
REFERENCES FERSTERD AND JAGADEESH B. Nonlinearity of spatial summation in simple
cells of areas 17 and 18 of cat visual cort&deurophysiob6: 1667—-1679,
ABBOTT LF, VARELA JA, SN K, AND NELSON SB. Synaptic depression and 1991.
cortical gain controlScience275: 220-224, 1997. GEeIsLER WS anp ALBRECHT DG. Cortical neurons: isolation of contrast gain
ALBRECHT DG. Visual cortex neurons in monkey and cat: effect of contrast on control. Vision Res32: 1409-1410, 1992.
the spatial and temporal phase transfer functidfis.Neuroscil2: 1191- GiL Z, Connors BW, anp AmiTal Y. Differential regulation of neocortical

1210, 1995. synapses by neuromodulators and actividguron19: 679—-686, 1997.
ALBRECHT DG, FARRAR SB, AND HamILTON DB. Spatial contrast adaptation GiLserT CD. Laminar differences in receptive field properties of cells in cat

characteristics of neurones recorded in the cat's visual codtéXhysiol primary visual cortexJ Physiol (Lond)268: 391-421, 1977.

(Lond) 347: 713-739, 1984. HawkeN MJ AnD PARKER AJ. Contrast sensitivity and orientation selectivity in

ALBRECHT DG AnD GEISLER WS. Motion selectivity and the contrast-response lamina IV of the striate cortex of old world monkey&xp Brain Resb4:
function of simple cells in the visual corteXis Neurosci7: 531-546, 1991. 367-372, 1984.

ALuisoN JD, MeLzer P, DING Y, BONDS AB, AND CASAGRANDE V. Differential  HAWkeN MJ, SHAPLEY RM, AND GRosor DH. Temporal frequency tuning of
contributions of magnocellular and parvocellular pathways to the contrastneurons in macaque V1: effects of luminance contrast and chromaticity.
response of neurons in bush baby primary visual cortex (Vi) Neurosci Invest Ophthalmol Vis Sci SuppB: 955, 1992.

17: 71-76, 2000. HeecerDJ. Normalization of cell responses in cat striate corté4s.Neurosci

ANDERSON JS, Q\RANDINI M, AND FERSTER D. Orientation tuning of input 9: 181-198, 1992.
conductance, excitation, and inhibition in cat primary visual cordedeu- HirscHJA, ALoNsoJ-M, REiD RC,AND MARTINEZ LM. Synaptic integration in

rophysiol84: 909-926, 2000. striate cortical simple cellsl Neuroscil8: 9517-9528, 1998.
Baskys A. Metabotropic receptors and ‘slow’ excitatory actions of glutamateloL.T GR aND KocH C. Shunting inhibition does not have a divisive effect on
agonists in the hippocampusrends Neurosci5: 92-96, 1992. firing rates.Neural Compu®9: 1001-1013, 1997.
BEN-YisHAI R, BAR-OR RL, AND SompoLINsKY H. Theory of orientation tuning HoLus RA AnD MoRrRTON-GIBSON M. Response of visual cortical neurons of the
in visual cortex.Proc Natl Acad Sci USA2: 3844-3848, 1995. cat to moving sinusoidal gratings: response-contrast functions and spatio-
BLasper GG anp FiTzpaTRICK D. Physiological organization of layer 4 in  temporal interactions] Neurophysiol6: 1244-1259, 1981.
macaque striate corted. Neurosci4: 880—895, 1984. HuseL DH anp WieseL TN. Receptive fields, binocular interaction and func-
Bonps AB. Temporal dynamics of contrast gain in single cells of the cat striate tional architecture in the cat’s visual corteikPhysiol (Lond)160: 106154,
cortex.Vis Neurosci6: 239-255, 1991. 1962.

Downloaded from journals.physiology.org/journal/jn (096.224.087.234) on July 30, 2020.



CONTRAST-DEPENDENT NONLINEARITIES IN CAT LAYER 4 2149

JoNEs JPAND PALMER LA. An evaluation of the two-dimensional Gabor filter ScLAR G. Expression of “retinal” contrast gain control by neurons of the cat’s
model of simple receptive fields in cat striate cort@xNeurophysiol58: lateral geniculate nucleu&xp Brain Re$6: 589-596, 1987.
1233-1258, 1987. ScLAR G AND FREeMAN RD. Orientation selectivity in the cat’s striate cortex is
KapLAN E, PURPURAK, AND SHAPLEY RM. Contrast affects the transmission of  jnvariant with stimulus contrasExp Brain Rest6: 457—461, 1982.
visual information through the mammalian lateral geniculate nucleuge ar G, MaunseLL JH, AND LENNIE P. Coding of image contrast in central

J Physiol (Lond)391: 267-288, 1987. _ visual pathways of the macaque monk®ysion Res30: 110, 1990.
KRrukowski AE. A Model of Cat Primary Visual Cortex and Its Thalamic Inputg,,p ey RM anp VicTor JD. The effect of contrast on the transfer properties
(PhD thesis). San Francisco, CA: University of California, 2000. of cat retinal ganglion cells] Physiol (Lond)285: 275-298, 1978.

KRukowskl AE AND MILLER KD. Thalamocortical NMDA conductances and

) . . . SKOTTUN BC, BRADLEY A, SCLAR G, OHzAWA |, AND FREEMAN RD. The effects
intracortical inhibition can explain cortical low-pass temporal tunidature

Neuroscid: 424—430. 2001 of contrast on visual orientation and spatial frequency discrimination: a
L ARKUM ME' 70 33 /;ND SA.KMANN B. A new cellular mechanism for comparison of single cells and behavidiNeurophysiob7: 773-786, 1987.

coupling inputs arriving at different cortical layendature 398: 338—-341, SKOTTUN BC, DE VALOIS RL, GROSOFDH, MovsHON JA, ALBRECHT DG, AND

1999. Bonbps AB. Classifying simple and complex cells on the basis of response
LINSENMEIER RA, FRISHMAN LJ, JAKIELA HG, AND ENROTH-CUGELL C. Recep-  modulation.Vision Res38: 1079-1086, 1991a. )

tive field properties of X and Y cells in the cat retina derived from contrasi<OTTUN BC, GRosoFDH, AND DE VALois RL. On the responses of simple and

sensitivity measurementyision Res22: 1173-1183, 1982. complex cells to random dot patterndsion Res31: 43—46, 1991b.
MaRkrAM H AND Tsopvks M. Redistribution of synaptic efficacy between SomMerRs D, NELsoN SB, AND Sur M. An emergent model of orientation

neocortical pyramidal neuronblature 382: 807—810, 1996. selectivity in cat visual cortical simple celld. Neuroscil5: 5448-5465,
McCormick DA. Membrane properties and neurotransmitter actionsT he 1995.

Synaptic Organization of the Brairedited by Shepard G. Oxford, UK: SonG S, VARELA JA, TURRIGIANO G, ABBOTT LF, AND NELson SB. The

Oxford, 1990, p. 32-66. dynamics of synaptic depression at monosynaptic inhibitory inputs to visual
McCormick DA, ConNORs BW, LIGHTHALL JW, AND PrRINCE DA. Compara- cortical pyramidal neurons. IrProceedings of the Computational Neuro-

tive electrophysiology of pyramidal and sparsely spiny stellate neurons ofscience Meeting, CNS98dited by Bower JM. New York: Plenum, 1999.

the neocortexJ Neurophysiob4: 782—805, 1985. STRATFORD KJ, TARCZY-HORNOCH K, MARTIN KA, BANNISTER NJ, AND JACK

NELSON S, ToTH L, SHETH B, AND SurR M. Orientation selectivity of cortical JJ. Excitatory synaptic inputs to spiny stellate cells in cat visual cortex.
neurons during intracellular blockade of inhibitidBcience265: 774-777, Nature 382: 258-261, 1996.
1994. TANG AC, BARTELS AM, AND Seanowski TJ. Effects of cholinergic modulation

NELsoN SB. Temporal interactions in the cat visual system. |. Orientation- on responses of neocortical neurons to fluctuating inPeteb Cortex7:
selective suppression in the visual cortdXNeuroscill: 344-356, 1991a.  502-509, 1997.

NELsoN SB. Temporal interactions in the cat visual system. Ill. PharmacolodArczy-HornocHK. Physiology of Synaptic Inputs to Layer IV of Cat Visual
ical studies of cortical suppression suggest a presynaptic mechaliigeoi- Cortex(PhD thesis). Oxford, UK: Oxford University, 1996.

rosci 11: 369-380, 1991b. Tarczy-HorNocH K, MARTIN KA, Jack JJ, AND STRATFORD KJ. Synaptic
NicoLL RA. The coupling of neurotransmitter receptors to ion channels in theinteractions between smooth and spiny neurons in layer 4 of cat visual
brain. Science241: 545-551, 1988. cortex in vitro.J Physiol (Lond)508: 351-363, 1998.
OHzawA |, ScLAR G, AND FReEemMAN RD. Contrast gain control in the cat's THomsoN AM, DeEucHARs J, AND WEST DC. Single axon excitatory postsyn-
visual systemJ Neurophysiob4: 651-667, 1985. aptic potentials in neocortical interneurons exhibit pronounced paired pulse
PeicHL L AND WassLE H. Size, scatter and coverage of ganglion cell receptive facilitation. Neurosciencé4: 347-360, 1993.
field centres in the cat retind. Physiol (Lond)291: 117-141, 1979. TrROYER TW, KrRukowski A, PRIEBE NJ, AND MILLER KD. Contrast-invariant

PriEBE NJ, KaYSER AS, KRukowskl AE, AND MILLER KD. A model of simple orientation tuning in cat visual cortex: feedforward tuning and correlation-
cell orientation tuning: the role of synaptic depressi8oc Neurosci Abstr  based intracortical connectivity. Neuroscil8: 5908-5927, 1998.

23: 2061, 1997. TrROYER TW AND MiLLER KD. Integrate-and-fire neurons matched to physio-
ReicH DS, Victor JD, KnigHT BW, Ozaki T, AnD KapLaN E. Response  logical f-I curves yield high input sensitivity and wide dynamic range. In:
variability and timing precision of neuronal spike trains in vidloNeuro- Computational Neurosciencd@rends in Research 199édited by Bower

physiol 77: 2836—-2841, 1997. JM. New York: Plenum, 1997a, p. 197-201.

SaNCHEZ-VIVES MV, M cCormick DA, anD Nowak LG. Is synaptic depression TRovER TW aND MiLLER KD. Physiological gain leads to high ISI variability
prevalent in vivo and does it contribute to contrast adaptaoe. Neurosci in a simple model of a cortical regular spiking celeural Comput9:
Abstr 24: 896, 1998. 971-983, 1997b.

SauL AB anD HumpHREY AL. Spatial and temporal response properties of sopyks MV aND MARkRAM H. The neural code between neocortical py-
lagged and nonlagged cells in cat lateral geniculate nucleNsurophysiol ramidal neurons depends on neurotransmitter release probaBiiity.Natl
64: 206—224, 1990. Acad Sci USM4: 719-723, 1997.

SauL AB anp HumPHREY AL. Evidence of input from lagged cells in the lateral WassLe H, BoycoTT BB, AnD ILLING RB. Morphology and mosaic of on- and
geniculate nucleus to simple cells in cortical area 17 of the Xéteuro- off-beta cells in the cat retina and some functional considerat®roe R
physiol68: 1190-1208, 1992. Soc Lond B Biol Sc212: 177-195, 1981.

Downloaded from journals.physiology.org/journal/jn (096.224.087.234) on July 30, 2020.



